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ABSTRACT

In most studies of the structure of sequential machines there
has been a tacit assumption that the machine was to be realized with
unit delay memory elements. In this report we consider the sequen-
tial machines that are realized with either trigger or set-reset flip-
flop memory elements.

It is shown that the relation called a partition pair which pre-
dicts the dependence of the input functions to unit delay memory ele-
ments does not predict the dependence of the input functions to trigger
or set-reset flip-flop memory elements. In this paper we define rela-
tions called t-pairs and r-pairs which characterize the dependence of
the input functions to trigger and set-reset flip-flop memory elements
respectively. It is found that these relations do not have all the
algebraic properties that partition pairs possess.

Feedback in sequential machines that are realized with trigger
or set-reset flip-flop memory elements is also studied. A method is
given for determining when a machine can be realized with either trigger
or set-reset flip-flop memory elements using function f for feedback.

It is shown that if a sequential machine can be realized with unit delay
memory elements using a function f for feedback then it can be realized
with set-reset flip-flops using f for feedback. It is also shown that for
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completely specified machines that if a machine can be realized without
feedback using unit delay memory elements then it cannot be realized
without feedback using trigger flip-flop memory elements. The converse

statement is also true.

iii




10.
11,
12,
13,
14,
15,
16,
17.
18,

19,

LIST OF DEFINITIONS
M= ({s},{x},{0},6.2)

Partition

T PP

m_ (1)
T"tf"p
Feedback in Trigger Flip-Flop Realizations .
m,tf(w')
A7), A#('r), By
#
Bg): B™(B). Byyy

T " rf“ p

Feedback in Set-Reset Flip-Flop Realizations .

mif(T)

iv

10

21

32

37

38

39

44

45

54

56

59

63

64




TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ,

Terminology . . . . . .+ + .+ < « + « . .

Partition Pairs . . . . . . « « « <« . .

CHAPTER 2. REALIZATIONS WITH FLIP-FLOP MEMORY ELEMENTS

Trigger Flip-Flop Realizations . . . . . . .

A,
B,
C.

Definition of "t" Relation
Theorems on Trigger Realizations
Algebraic Properties of "t"

Set-Reset Flip-Flop Realizations . . . . . . .

Mg QW >

Definition of "r" Relation

Theorems on Set-Reset Realizations
Algebraic Properties of "r"
Definition of "r" Relation

Theorem on "F"

CHAPTER 3. FEEDBACK . . . . . .

Introduction . . . . . . < . . . . .

Feedback and Trigger Flip-Flop Realizations

Mg QW

Definition of "tf"

Theorems on "tf"

Definition of Feedback with Trigger Flip-Flop
Memory

Definition of my¢

Theorem on Feedback with Trigger Flip-Flop
Memory

Theorem Relating Feedback with Unit Delay
Memory to Feedback with Trigger Memory

10
12
17

21
21
25
29
32
34

37
37
39
39
42

44
45

46

53




TABLE OF CONTENTS - (Continued)

Feedback and Set-Reset Flip-TFlop Realizations . .
Definition of "rf"

Theorems on "rf"

Definition of Feedback with Set-Reset
Flip-Flop Memory

Definition of m/¢

Theorem Relating Feedback with Unit Delay
Memory to Feedback with Set-Reset Memory

My QW >

BIBLIOGRAPHY . . . . . + « ¢ v o o o @« &« o &

vi

59
59
60

63
64

70

72




CHAPTER I

Introductory Concepts

This report is concerned with the structure of synchronous

sequential machines that are realized with trigger or set-reset flip-

flop memory elements., Hartmanis and Stearns have considered this

problem for delay type memory elements. A familiarity with their re-

sults which are in the references would be useful in understanding this

paper, We shall now state some well known preliminary concepts.

Definition 1. A sequential machine is a five tuple

M= ({s},{x},{0}.8,1). Where

1.

{s} is a finite set called the states of M.

{x} is a finite set called the inputs to M.

{0} is a finite set called the outputs of M.

6 is a function with the domain of § a subset of {s}x {x}
and range a subset of {s}. Thatis 6:{s}x {x} - {s}.

A is a function with domain a subset of { s} x {x} and range

{0}. Thus rx:{s}x {x} = {0}.

For our purposes A and {0} are not important and we suppose

the inputs to be n-tuples of {0, 1}. Frequently we discuss partitions

on the states of a machine M. These partitions will be denoted by

Greek letters. A definition and an example of this concept follows.
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Definition 2. A partition p on a set {s} is a collection of sub-

sets of {s} such that

1. U A={s}
A¢p

2, If A and B are in p, then ANB = ¢,

Example. If {s} ={1,2,3,4,5} then a partition p is given by
o= {{1,2},{3,431,{5}}. It is more convenient, however, to use the
notation p = (ﬁ:ﬁ;?) . The subsets of p are often called blocks of
o. For example—l,—z is a block of p. When we discuss partitions we
frequently need to discuss their blockys. If p is a partition on a set {s}
and if ae{s}, then o[a] will denote the block of p which contains a. In
the above example p[3] = 3,4,

A trigger flip-flop is the two state sequential machine specified

in Figure 1, A particular input to a trigger flip-flop will be denoted by T.

s T 8(s,T) A(s,T)
1 0 1 0 {s} ={1,2] states
11 2 0 {x} = {0,1} inputs
2 0 2 1 {0} = {0,1} output
2 1 1 1

Figure 1

If we are discussing more than one trigger flip-flop,we will index them
t
with integers and refer to the i h flip-flop with input Ti where i is an

integer.




A set-reset flip-flop is the two state machine specified in
Figure 2, A set-reset flip-flop has 2 inputs., A particular input will
be denoted by (S,R) where S is called the set input and R is called the
reset input. Again if we are discussing more than one set-reset flip-
flop we shall index them with integers and refer to the ith flip-flop

with inputs Ri and Si where i is an integer.

s 8 R 6(s,8,R)  A(s,S,R)
1 0 0 1 0
1 0 1 1 0 {s}=1{1,2}
1 1 0 2 0 {x} = {0,1}3x{0,1}
2 0 0 2 1 {0} = {0,1}
2 0 1 1 1
2 1 0 2 1
Figure 2

The next definition is that of a weak partition pair which is
discussed in Reference 3. Our notation for a partition pair will be

somewhat different than that of Hartmanis and Stearns.

Definition 3. Let r and p be state partitions on machine

M = ({s},{x},{0},8,1). Then"p"p iff p[s(a,x)] = pls(b,x)] for every
two states a and b such that r[al = v[b] and for every input x such that

8(a,x) and §(b, x) are defined.
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‘ The following results are some properties of weak partition pairs
which we shall merely list since they are proved in Reference 3. But
first we must define what we mean by one partition being greater than

another and we must also define how we multiply and add partitions.

Definition 4. Let 1,p be partitions on {s}. Thenrt > p iff

tlal > plal for every se{s}. Recall that r[al and pla] are sets.

For example if {s} = {1,2,3,4,5}, r =(1,2;3,4,5) and

o =(1,2:3,4;5) thent >op.

Definition 5. Lett and p be partitions on {s}. Thenrt +p = vy

where v is the smallest partition (equivalence relation) which contains
both 7 and p. This is characterized by the property that if a,be{s} then

ylal = vI[bl if and only if there exists a s...03 in {s} such thata =a,,

a, = b and for every i such that 1 < i < k-1 either »r[ai] = T[ai+ lor

k 1

p[ai] = p[ai+1].

Example, Let {s} ={1,2,3,4,5}, p =(1,2;3,4;5) and

v =(1;2,3;4;5). Thenr+ p=(1,2,3,4:5).

Definition 6, Let v and p be partitions on {s}. Thent.p =1y

where vy is a partition on {s} such that for every a,be{s} ylal=y[b] iff

tlal = 7[b] and plal = p[b].




Result 1 (Lemma).

Let M = ({s},{x}.{0},5,1) be a machine.

1. If +"p"p and if y > p, then r"p"y.

2, Ift"p"p and if ¢ <7, theno"p"p.

3. If M is completely specified; that is, if the domain of
§ is {s}x{x}, then Tl“p"p1 and 'rz"p"pz implies that
(ry+7,)"p" (o + Py

4, Ile p P andT2 p Py thenTl-rr2 p AP

In order to realize a machine M it is necessary to code the
states of M into n tuples of {0,1}. The coding function will be called
h and h:{s} - {0, l}n is a 1-1 function. The ith projection of h will be
called hi that is for every state hi(s) =y, where h(s) = (yl, ceerYiiees ,yn)
and Y is in {0, 1}. It should be noted that our concept of a realization
and that of Reference 3 are not the same in that we do not expand the
machine,

We are often interested in subspaces of {0, l}n. To be specific,
letn=75, (yl, .. .,yn) =(0,1,0,1,1) is in {0, 1}5. We want a general
way to refer to specific coordinates of (yl, 0o ,yn) , say coordinates 3
and 5 where (y3,y5) = (0, 1) an element of {0, 1}2. We will use the

following formalism to do this. If A< [1,...,n], we let {0, l}A be {0, l}J

where j is the number of elements in A, Ify= (yl, .. .,yn) e {0, 1}n, we




denote by y, the jtuple (y, ,....vV.,) ¢ {0,1}A where i, <i_ < *** < i,
A i, i 1 2 j

and il'iz’ - .,ij are all in A. In the above example A = {3,5},
{O,I}A = {0,1}2 and when y = (yl, .. .,yn) =(0,1,0,1,1) then
y, = (0,1 ¢ {0,13".

If we are given a coding function h:{s} - {0, l}n for a machine

-~ M we can associate the following partitions with it, For every

ie{1,...,n} we define the partition p, by pi[a] = pi[b] iff hi(a) = hi(b) .
We call Py the partition associated with hi' Conversely given a two
block partition Py on a machine M we can define a function hi on {s}
such that hi(a) =1 if a is in block 1 of 0y and hi(a) = ( if a is in block
2 of Py This hi will be called the function associated with Py- If there
are n such o, then h(a) = (hl(a), cen ,hn(a)) is 1-1 if il'll P = g the zero
partition. Often we are given A < {1,...,n} and we want to discuss
h,(a) for a ¢{s}. It should be noted that if r = 5\1 p, then rla) = 7ol
implies that hA(b) .
nachine by h into {0,1} then h need not be onio.
We denote by Yi a function such that Yi:{O, l}n x{x} - {0,1} and
Yi(h(a),x) = hi(s(a,x)) for every a e{s} and xe{x}. ThusY, isan ex-
tension of the ith next state function to all of {0, l]n.

A problem in many of our results is filling in the "don't care"

terms properly. In the results pertaining to unit delay realizations this

is fairly easy. But when one considers flip-flop realizations the
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situation is more complicated, This is the reason for much of the com-
plexity in some of our proofs relating to reduced dependence. With this

in mind we state the following Theorem,

Result 2 (Theorem).

Let M be a machine coded by h into {0,1}". Let A and A' be
subsets of {1,...,n}., Ifr = l/'\l oy and p = II;I' Py then v "p"p iff for
every gel\' there exists Yg such that Yg(y,x) = Pg(yA,x) for every input
x and for every y ¢{0, l}n.

Proof.
For every v ¢{0, l}n such that y = h(a) for some a ¢{s} and such

that §(a,x) is specified let Yg(y,x) = hg[a(a,x)] for every geA'. Suppose

T"p"p. Show that if we define Fg(hA(a),x) = hg[zS (a,x)] then Fg is well

defined on {hA(a) |ae{s}}. If there exists a,be{s} such that hA(a) =
hA(b) and §{a,x) and s(b, x) are specified, then tlal = t[b]. Since r"p"p
this implies pls(a,x)] = pls(b,x)]. Therefore pg[6 (a,x)] = pg[6 (b, x)]
because pgz p. Thus hg[e (a,x)] = hg[é (b, x)] and Fg is well defined on
the set of all {hA(a) |ac{s}}. Extend Fg to all of {0, l}A in any manner,
Recall that Fg(yA,x) is arbitrary if there is no ae{s} and xe{x} with
§(a,x) specified and Yy = hA(a). For every y ¢{0, l}n let Yg(y,x) =
Fg(yA,X).

Consider the converse. Let a,be{s} and xe{x} such that §(a,x)

and 6 (b, x) are specified and r[a] = r[bl. rla] = ¢r[b] implies that




hA(a) = hA(b) . Therefore Yg(h(a),x) = hg(& (a,x) = Pg(hA(a),x) =

Fg(hA(b),x) = hg[5 (b, x)] for every geA. This in turn implies that

pg[é (a,x)] = pg[6 (b, x)] for every geA. Hence pls(a,x)] = pls(b,x)]. ||
This concludes the preliminaries. We will now consider

sequential machines that are realized with flip-flop memory elements.

In the next chapter we consider first machines that are realized with

trigger flip-flop memory elements and later consider machines that are

realized with set-reset flip-flop memory elements.




CHAPTER II

Realizations with Flip-Flop Memory Elements

Trigger Flip-Flop Realizations

The following example demonstrates the difference between

trigger flip-flop realizations and unit delay realizations, Machine A

in Figure 3 has partition pairs (1,2:;3,4)"p"(1,3;2,4) and (1,3;2,4)"p"

(1,2:;3,4) where (1,2:3,4) - (1,3;2,4) = g. If we let Py be (1,3;2,4)

and associate hl with Py and if we let Py be (1,2:3,4) and associate

h2 with 0, then from Result 2 it follows that Yl(yl,yz,x) = Fl(yz,x) and

Yz(yl,yz,x) = Fz(yl,x) where Y0¥, €{0,1} amd xe¢{x}. In particular

Y, = ;cyz + x§’2 and Y, = }_cyl + x, But when we compute the trigger

; = xv +XV. V. + xv.yv. +
functions we get Tl(yl,yz,x) Xy ¥, * Xy ¥, + Xy, v, ¥ xv,v, and

= Xy + v. V. + xy ' . +
Tz(yllyz,x) XY Y, ¥ Y, + Y, where the operations - and + are

Boolean.
Inputs
0 1
1 1 4
States 2 3 4 (1'2;314) p (113;214)
3 | 2 3 (1,3;2,4)"p"(1,2:3,4)
4 4 3

Figure 3. Machine A

9
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We see from this example that the functional dependence is not
in general the same for trigger flip-flop realizations as it is for delay
realizations., Hence partition pairs do not characterize trigger flip-flop
realizations., The next definition gives a relation which does characterize

trigger flip-flop realizations,

Definition 7. Let M = ({s},{x},{0},8,1) be a sequential machine,

The state partitions v and p are in relation r"t"p iff

1. p is a two block partition

" "

2. t-p"'P'p
3. For every two states a.b such that t[a] = +[b] and pl[a] #
olb] and for every input x, then pls(a,x)] # pls(b,x)] when

s(a,x) and s(b,x) are specified.

Note that 3 merely says that the next states are in different

blocks of p. For an example of this definition consider Machine B in

Figure 4. In this machine (1,2;3,4,5)"t"(1,2,3, S;Z). Note that

(1,2, 3,5,'2) is a two block partition and that (1,2;3,5,‘74.)"p"(1,2, 3, SJZ)

where 1 +p = (1,2:3,4,5)-(1,2,3,5:4) = (1,2:3,5;4). Also for every input
x &(3,x) and §(4,x) as well as §(5,x) and §(4, x) are in opposite blocks

of (1,2,3,5:4).
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Inputs

0| 1

1 3] 3
States 2 5 | 1 (1,2;3,4,5)"t"(1,2, 3,5:4)

3 2 | 4

4 4 | 2

5 1 | 4

Figure 4, Machine B

It should be observed that if p >t then +"p"p and v "t"p are
equivalent when p is a two block partition. Also if p is a two block
partition and v = p then t"t"p implies p"p"p which implies that p has
the substitution property.

Before we proceed to the principal results we need the following

lemma.

Result 3 (Lemma).

Let machine M be realized with the gth memory element a
trigger flip-flop and let A be a subset of {1,..., n} which does not
contain g. Also suppose Yg(y,x) = yg M(yA,x) + ;’g N(yA,x) for every
input x and for every n tuple y in {0, l}n. Then Tg(y,x) = Gg(yA,x)
iff M= N.

Proof.
i) Suppose Tg(y,x) = Gg(yA,x) . In general Tg(y,x) = ygﬁ_{g(y,x)

+ §ng(y, x). Substituting the equation given for Yg and simplifying gives
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T (y,x) = M(y,.,x)+y_ N(y. ,x). Weclaim M =N, Suppose
g(y Yg (yA Yg (yA }) pp
there exists ¥, and x such that M(yA,x) # N(yA,x). Consider the n
tuple y' where y'i = Y, for every i in A, yé = 0 while the remaining '
are arbitrary. Note that g is not in A, Consider the n tuple y# where
#_ . ¥ _ . (s # .
yi = yi for every i in A, yg = 1 while the remaining yi are arbitrary,
Then Tg(y',x)= N(yA,x) and Tg(y#,x) = T\—/I(yA,x) . But from the hypothesis
Tg(y' /X) = Tg(y#,x) . Therefore N(yA,x) = _M(yA,x) which is a contra-
diction,
ii) Suppose M = N. As before T (y,x) =Y M(y. ,x)+y N(y., ).
) Supp g g (yA v, Ny,
Since M = N this implies that Tg(y,x) = N(yA,x) for every n tuple y in
{0, 1}n and for every input x, |
Now we give the theorems for reduced dependence for trigger
flip~flop input functions. The next two theorems give necessary and
sufficient conditions that the input function to a trigger flip-flop be a

function of a subset of the state variables.

Result 4 (Theorem).

If a sequential machine M coded into {0, 1}n by h has a reali-
zation with the gth memory element a trigger flip-flop such that Tg(y,x) =
Gg(yA,x) where y is any element of {0, l}n, X is an input, and A is a
subset of {1,..., n} then the state partitions p and v are such that

T"t"p where o = and Tt =1 p..
p p Pg A Pl
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Proof.

i) Suppose geA. Thent < p and since for a trigger flip-flop
Yy, x) = T,(v.%) §g + '_fg(y,X) ¥, we getthat Y (y,x) = Gy, ) §g
+ ég(yA,x) yg from the hypothesis. Therefore Yg(y,x) = Fg(yA,x)
since geA. Thus from Result 2 we get that +"p"p. Since p >t this
means 7 "t"p.

ii) Suppose g¢A. From the hypothesis and Result 3 Yg(y,x)
= yg M(yA,x) + ;:g N(yA,x) for every y {0, l}n and for every input x
and also M = N. From Result 2 this implies that r .0 pP"p since
Yg(y,X) = Fg(yA,yg.x).

Let a,b be states such that r[a] = r[b] and pla] # plb] and let
x be an input. Show pls(a,x)] # pls(b, x)] if §(a,x) and s(b, x) are
specified. tlal = r[b] implies that hA(a) = hA(b) from the hypothesis
and the definition of p. Also plal # p[b] implies that hg(a) # hg(b) from
the definition of p = Py But Yg(h(a),x) = hg(a) M(hA(a),x) + Eg(a)
N(hA(a),x) and Yg(h(b),x) = hg(b) M(hA(b),x) + Eg(b) N(hA(b),x) . Since
hg(a) # hg(b) assume with no loss of generality that hg(a) = 1 and
hg(b) = 0. Then Yg(h(a),x) = M(hA(a),x) and Yg(h(b),x) = N(hA(b),x).
Since hi(a) = hi(b) for every ich and M = N this implies that Yg(h(a),x)
# Yg(h(b),x) which implies that hg[é (a,x)] # hg[é (b,x)] from the

definition of Py |
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A corollary to this theorem relates delay realizations to trigger

flip-flop realizations.

Result 5 (Corollary).

Let M be a machine coded by h into {0, l}n and let A, A' be
subsets of {1,...,n} with A' < A, If machine M is realized with trigger
flip-flop memory elements such that Ti(y,x) = Gi(yA ,x) for every i in A'

then the partitions t = Ij’{pi and p = I p, are such that +"p"p.
AI

Proof.

From Result 4 "r"t"pi forevery i infA. Since ieA' implies ieA
we have that T < p,. Therefore T"t"pi implies 1"p"p, for every i in A
Thus t"p" II\I. 0y since the multiplication of partition pairs is a partition
pair from Result 1. Thus t"p"p.

We now give the necessary conditions for reduced dependence

for trigger flip-flop realizations.

Result 6 (Theorem).

If machine M is coded by h into {0, l}n such that r"t"p where
P =0y with ge{l,...,n} and r = Ij} P, with A < {1,...,n} then Tg(y,x)
= Gg(yA,x) for every y in {0, 1}n and for every input x.
Proof,

Since t"t"p we know that t.p"p"p. From Result 2 this implies

that Yg(y,x) = Fg(yA,yg,x) for every y in {0, l}n and for every input x,
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There are two cases to consider,

i) Suppose geA. Then Yg(y,x) = Fg(yA,x) . Recall that
Tg(Y:X) = ygﬁ—(g(y,x) + §ng(y,x) =Y, f‘g(yA,x) + ;rg Pg(yA,x). If we
let Gg(yA,x) = yg f‘g(yA,x) + ;rg Pg(yA,x), then we get the result,

ii) Suppose g #h. Recall that we have certain freedoms on Fg.
Namely for every a ¢{s} and input x such that s(a,x) is specified
Fg(hA(a), hg(a),x) = hg[é (a,x)]. Otherwise we may specify Pg(yA,yg,x)
in any manner, We specify Fg on all the (yA,yg) such that (yA, yg) #
(hA (a), hg(a)) for any a ¢{s} with 8(a,x) specified as follows, If Yy = hA(a)
for some a e{s} but yg # hg(a), then define Fg(yA,yg,x) = Fg(hA(a),
hg(a),x) . For the (yA , yg) that remain we define Pg with the constraint
that Fg(yA,yg,x) = I_Tg(yA,§g,x) which can clearly be done. Show
Fg(yA,yg,x) = f‘g(yA,yg,x) for all the (yA,y,X) . The only case that
must be considered is when there exists a,b e¢{s} and x such that
hi(a) = hi(b) for every i in A and hg(a) # hg(b) while §(a, x) and §(b, %)
are specified. But hi(a) = hi(b) for every i in A implies tla] = 7[b]
and hg(a) # hg(b) implies plal # p[bl. From the definition of v"t"p this
implies that pls(a,x)] # pls(b,x)] or hg[5 (a,x)] # hg[a(b,x)] which is
equivalent to Yg(h(a),x) # Yg(h(b),x) . Therefore Fg(hA(a), hg(a),x)

# Fg(hA(b),hg(b),x). Thus Fg(yA,yg,x) # Fg(y/\';’g'x) for all (yA,yg,x).

Since Yg(y,x) = Fg(yA,yg,x) we deduce that Yg(y,x) = ng(yA,x)

+§g.N(yA,x). Show M = N. Consider a particular (yA,'x),
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then M(yA,x) = Fg(yA’Yg = 1,x) and N(yA,x) = Pg(yA,yg = 0,x). But
Fg(yA, 1,x)= f‘g(yA, 0,x) thus N(yA,x) = I\_/I(yA,x). From Result 3 this
says that Tg(y,x) = Gg(yA,x) |

It should be noted in the proof that when there are "don't care"
terms they must be filled in properly. Recall that these terms arise
from an incompletely specified machine or they arise when all the n
tuples of {0, l}n do not represent a state as happens in 5 state

machines,

Result 7 (Corollary).

" 1

Let machine M have state partitions t and p such that t"p"p
and p >7., If M is coded by h into {0, 1}n such that t = l/'\l p; where
A<{l,...,n}and p < Py where ge{l,...,n} then Tg(y,x) = Gg(yA,x)
for every y in {0, l}n and for every input x.

Proof.

If ng p then 1 "p"p implies v"p pg from Result 1, ng P>T

" "

means that +"p Pq is equivalent to 'T"t"pg. Therefore from Result 6
T ( IX) = G IX .
oY g(yA ).l
For an example of Result 7 consider machine C in Figure 5, If

we code machine C with h such that h, is constant on the blocks of p 1’

1

h2 is constant on the blocks of Py and h3 is constant on the blocks of

p3,thenfromResult6 Tl(yl,yz,y3,x) = Gl(YZIX) since p,"t"p,. For

one possible assignment Tl(yl,yz,y3,x) = yzx.
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Inputs
0 1 Py = (1,2,3,4:5)
1 2 3 p, = (1.2:3,4,5)
States 2 2 4 Py = (1,3,5;2,4)
3 5 1 pz"t"pl or (1,2;3,4,5)"5"(1,2,3,4;5)
4 5 4
5 3 5

Figure 5. Machine C

It is obvious that the relation "t" does not have all the algebraic
properties of the relation "p" since for all partitions such that t"t"p we
limit p to a two block partition, Therefore we cannot expect statements
like the multiplication of t-pairs is again a t-pair. Nevertheless the

relation "t" does have some properties which we now investigate.

Result 8.

If r"t"p and y < 7 then y"t"p.
Proof,

i) Show y-p"p"p. v < T implies y-p <7.p hence from Result 1
and the fact that vr+p"p"p we deduce that y+p"p"p.

ii) Let a,b e¢{s} such that y[al = y[b] and pla] # p[b]. Then

since T >y we have that t[al = t[b]. Because t"t"p this implies that

pls(a,x)] # pls(b, x)] if 5(a,x), s(b,x) are specified. ||
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Result 9,

If 7"t"p and v"t"p then v .y"t"p.
Proof.

T ey <t implies 7 .y"t"p from Result 8.

Result 10.

Let M be completely specified. If t"t"p and y"t"p then

('T + ’Y)“t"p
Proof,

i) First consider a sequence of states al, . ,aj such that for
every i in {1,...,i-1} rlal=+la,  Tor vla]l=vla 1. We show

by induction that if p[a1] = p[a.] then pls (al,x)] = ols (aj,x)] while
if pla ]%p[a]that pls(a :X)]?‘p[s(a x)].

Suppose j=2. Then rla ] = T[a ] or y[a 1= y[a 1. 1f
p[al] = p[az] this implies p[é(al,x)] = p[é(az,x)] since T.p"p"p
and y:p"p"p. If p[al] # p[az] then we deduce that p[a(al,x)]
# ols (az,x)] since t"t"p and y"t"p.

Assume the hypothesis is true for every integer j in {1,..., k}

with k >2, Let a,,...,a

1 K’ ak_‘_1 be a sequence of states such that

rlaJ=rla  Jorylal=yla, ] foralliin{l,....k}.

Suppose pla;l=pla, ;1. 1f plal=pla ;1 thenopla,]

k+1
= p[ak] which from the inductive hypothesis implies pl[$ (al,x)]

olsa,  x)] = olsa, . x]. I pla] #ola, ;1. then pla,1# ola ]
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which implies p[&(ak,x)] # p[é(ak+1,x)] and pls (al,x)] # ols (ak,x)]
from the induction hypothesis. But since p is a two block partition this
implies  p[$ (al,x)] = p[é(ak_l_l,X)].

Suppose pla,] # pla If opla 1=pl ] then pla,]
1 k 1

REE a1

# p[ak] which from the inductive hypothesis implies p[s (al, %)]

#p[é(ak,x)]=p[6(a ,%)] orp[é(aIIX)]?’p[&(a .x)]. pr[ak]?‘p[a ]

k+1 k+1 k+1

then p[al] = p[ak] which implies pl[s (al,x)] = o6 (ak,x)] # p[5(ak+1,x)]

or p(é(al,x)]ifp[é(a %),

k+1
ii) Show (t + y)"t"p. Let a,b be states such that (r + v)[al

={(r + 'y)[b] then there exists a sequence of states a . ,aj such that

e
a)=a, a =band tlal=rla, ] orylal=vyla ] foreveryiin
{1,...,j-1}. If plal = p[b] then from i) pls(a,x)] = pls(b,x)]. There-
fore p.(1+ y)"p"p. Ifplal # plb] then fromi) pls(a,x)] # pls(b,x)].

Therefore (1 + y)"t"p. ||

For a given 2 block partition p on a completely specified machine
Result 10 implies the existence of a largest partition r such that t"t"p.

We conclude this section with the following theorem. It gives the
conditions which allow one torealize a machine with trigger flip-flops and

get reduced dependence for more than one flip-flop,
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Result 11 (Theorem).

Consider a machine M such that

i) There exists the following partitions in the t-relation

Tl t pll T2 t pzlboclTn t pno
ii) For every g in {1,...,n} there is a subset Ag of {1,...,n}

such that

iii) For every g in {1,... +n} M is coded by h into {0, l}n such
that hg is constant on pg. In other words pg is the partition associated
with h ,

g

Then for every g in {1,...,n} Tg(Y,x) = Gg(YA,X).
Proof.

It follows from i), ii) and Result 8 that for every g in {1,..., n}
(I p)"t"p . From iii) and Result 6 this implies that T (y,x) =G (y,,x)

A g g g A
g
for every y in {0, l}n and for every input x. |

An example of Result 11 is given by machine C in Figure 6. If we
code machines C by h into {0, 1}3 such that PysPyspyare the partitions
associated with h then since

TyZ PPy Py

T3 2Py P3
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we deduce from Result 12 that Tl(yl,yz,y3,x) = Gl(yz,x), Tz(yl,yz,y3,x)
= Gz(yl:Y2:Y3:X), and T3(Y1,y2,Y3,X) = G3(y2,y3,x). For one such

. : = - = v + v by = vV V. X +
coding function h T1 yzx, T2 y2x y1y2y3x and T3 y2y3x y2y3x.

Inputs
0 1
1 |2 | 3 (1,2i3,4,5)"t"(1,2,3,4;5) = 1 "t"p
2 2 4 (1,2,3;4;5)"t"(1,2:3,4,5) = Tz"t"pz
States 3 5 1 (2,3,5;1,4)"t"(1,3,5;2,4) = 1'3"1:"p3
4 5 4
5 3 5

Figure 6, Machine C

Set-Reset Flip-Flop Realizations

In this section we consider sequential machines realized using
set-reset flip-flops as memory elements, The organization and results
of the section are similar to those of the previous section. As in the
case for machines realized with trigger flip-flop memory elements parti-
tion pairs do not characterize machines realized with set-reset flip~flop
memory elements. Definition 8 gives a relation which does characterize

set-reset flip-flop realizations,

Definition 8, Let M = ({s},{x},{0},5,\) be a sequential

machine., The state partitions 1 and p are in relation t"r"p iff
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1. p is a two block partition

2. T.p"'DPp

3. For every two states a and b such that +[al = v[bl, plal
# o[b] and for every input x such that §(a,x) and §(b, x) are specified
then either pls(a,x)] = pls(b,x)] or s(a,x) ¢ plal and §(b,x) ¢ olbl.

For an example of the preceding definition consider Machine

D in Figure 7. In this machine (1,2,3,4;5)"r"(1,2;3,4,5). Note

p =1(1,2;3,4,5) is a two block partition and that r.p"p"p = (1,2:3,4:5)

“p"(1,2:3,4,5). Also note for example that p[§(1,0)] = pls(3,0)] and

that 6(1,1) = 2 is in p[1] = 1,2 and 6(3,1) = 4 is in p[3] = 3,4, 5.

Inputs
0 1
1 3 2
N R "o = (1,2,3,4;5)"r"(1,2:3,4,5)
States 3 5 4
4 3 4
5 1 5

Figure 7. Machine D

It should be observed from the definition that if p >t and if p
is a two block partition then 1"r"p and t"p"p are equivalent., If we

t
realize a sequential machine coded into {0, l}n by h such that the g b

memory element is a set-reset flip-flop where ge{1,..., n} then




23
S X)=98 (Y 1 X), and R /X) = Y e X) . for all v in
g(y x)=2_( g(y ) yg) g(y ) X <J(y ) yg) Y
{0, l}n and for every input x, @s and ér are incomplete functions in
that they are not specified for all evaluations of Yg and yg. Given a
. n , max . ,
Boolean function F:{0,1}" - {0, 1} then we define F (y) = F(y) if F(y) is

max

specified and F (y)=1 if F(y) .is.not-specified. We define me(Y)f= F(y)

if F(y) is specified and len‘(y')=0 otherwise, It should be noted that if
F is extended to all of {0, 1}n then Fmaxz F> F™ where F > Fme

means that if me(y)=1 then F(y)=1. We are now ready for two lemmas.

Result 12 (Lemma).

Let M be a sequential machine coded by h into {0, l}n. Let g
be in {1,...,n} and let A < {1,...,n} with g gA. If Yg(y,x) = ygU(yA,x)
+ gfg W(yA,x) for every y in {0, l}n and for every input x where W< U
then M can be realized with the gth memory element an r-s flip-flop
such that R (y,x) =1 , %) while S (y,x) = H . %) for ever in
g(y ) g(yA ) g(y ) g(yA YY
{0, 1}n and for every input x.
Proof,
max - min, -
Since S X)) =Y Uly,,x) + Wly, ,x) and S v)=y Wly, ,x
g (v, x) g (yA ) Yg (y, ) g (y) Vg (YA )
in ;g‘eneral, . ;Sg(Y:X) ,= §’g v(yA;, };)4 +§/g‘ W(Y_A’ x) .whereV is any '

function such that V < U for every y in {0, l}n and for every input x.

Since W < U we can let V=W, If this is done then Sg(y,x) = W(yA,x) .
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min
(

max = - =
imilarly R 1 X) = X)) + P '
Similarly g (y,x) yg U(yA x) yg W(yA x) and Rg Y. X)

= Uly, ,x). Thus in general R (y,x) =y TUly,.x)+y_ My, . x
Yq Uly, %) g g7 ¥y Ulyy x) +y My, x)

where M can be any function such that —I\7I5 W. But W < U implies that

W >TU. Thus we can let M = U. If this is done then Rg(y,x) = U(yA,x). I

The next Lemma is the converse of the previous one.

Result 13 (Lemma).

If M is coded by h into {0, l}n and realized such that the gth
memory element is a set-reset flip-flop with Sg(y,x) = Hg(yA,x) and
Rg(y,x) = Ig(y/\' x) for every y in {0, l}n and for every input x where A
is a subset of {1,...,n} such that ggA. Then Yg(y,x) = Yq U(yA,x) + §’g
W(yA,x) where U > W,
Proof,

In general Y (y,x) =y Uly,x)+y_ Wl(y,x) and S (y.x) =y Vl(y,x)

g g g g g
+:.»_§g W(y,x) . where V< U while Rg(y,x) =¥ Uly,x) + ;’g M(y, %)
where M < W. Since Sg(Y,x) = Hg(yA,x) then V(y,x) = Hg(yA,x) = W(y, x)
since g¢A. Since R (y,x) =1 (y,.x) then M(y,x) =1 (y,.x) = Uly.x).
g g A g A

Thus W(y,x) = Hg(yA,x) and Uly,x) = fg(yA,x) which implies W(y, x)
can be written as W(yA,x) and U(y,x) can be written as U(yA,x) )

Show W < U, Since V=W, . M=T, V<UandM<W we

get immediately that W< U. |
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With the aid of the previous lemmas we can now state and prove
the theorems which give the necessary and sufficient conditions for a

machine realized with set-reset flip-flops to have reduced dependence.

Result 14 (Theorem).

Let M be a machine coded by h into {0, l}n and realized such
that the gth memory element is a set-reset flip-flop where ge{1,...,n}.
In addition for every y in {0, 1}n and for every input x Sg(y,x) = Hg(YA , X)
while Rg(y,x) = Ig(yA,x) where A is a subset of {1,...,n}. Then the

"t

partitions p = Py and r =11 p; are in relation +"r"p.
A

Proof.

i) Suppose geA. As in Result 13 Yg(y,x) =Y, Uly, x) + §g W(y,x)

while Sg(y,x) = Yg V(y, x) + ;rg W(y,x) and Rg(Y:X) Y, Uly, %) + §g My, x).
Therefore multiplying Sg by §g gives §7g Sg(y,x) = {/g W(y.x) and multi-
plying f(g by yg gives yg ﬁg(y, x) = yg Uly,x). Therefore Yg(y, %)
'=_yg Rg?(Y,X)"';Ing(Y:X). Which implies that Yg(y,x) = yg -ig(yA,x) '
+ ;'g Hg(yA, %) from the hypothesis. Therefore Yg(y, x) = Fg(yA ,X) since
geA which from Result 2 implies t-.p"p"p. Since geA this implies p>
thus +"p"p and since p is a 2 block partition "r"p.

ii) Suppose g¢A. Then from Result 13 Yg(y,x) = yg U(yA,x)
+ ;rg W(yA,x) with U > W. Thus from Result 2 again t-p"p"p. Leta,b

be in {s} and x be an input such that s(a,x) and §(b,x) are specified.
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Also let rlal=rt[b]land pla]l # p[b]. Since +lal=r[b] andr = l/'{ Py
we have that hA(a) = hA(b). Since plal # p[bl and p = Py We have
that hg(a) # hg(b).

Suppose 6(a,x) ¢ p[b). This means that Yg(h(a),x) = hg(b)
since hg(s(a,x)) =Yg(h(a),x). Show Yg(h(a),x) = hg(b). Suppose
hg(b) = 0 and hg(a) = 1. Then since Yg(h(a),x) = hg(a) U(hA(a),x)

+ Eg(a) W(hA(a),x) we have that Yg(h(a),x) = U(hA(a),x) which is 0,

Since U > W this implies W(hA(a),x) = W(hA(b),x) = 0, And since in

this case Yg(h(b),x) = W(hA(b),x) = 0 we have Yg(h(b),x) = hg(b).

Suppose hg(b) =1 which implies hg(a) = 0. Then Yg(h(a),x) = W(hA(a),x)
= 1. Since U > W, this implies that U(hA(a),x) = U(hA(b),x) =1,

Yg(h(b),x) = U(hA(b),x) =1 in this case. Thus Yg(h(b),x) = hg(b). Since
Yg(h(b),x) = hg(b) we have that pg[é (b,x)] = pg[b]. Thus s(a,x) ¢ plb]
implies (b, x) e p[b]. Similarly s(b,x) ¢ pla] implies s(a,x) ¢ olal.

Therefore 1"r"p. ||

The previous theorem has a corollary which tells when partition

pairs relate to reduced dependence for set-reset realizations.,

Result 15 (Corollary).

If a sequential machine coded by h into {0, l}n has a realization
with set-reset flip-flops such that Rg(y,x) = Ig(yA,x) and Sg(Y,x)

= Hg(yA,x) for all g in A* where A' and A are subsets of {1, ... ,n}
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such that A* < A, then the partitions 1 = l;\l p;and p =‘[l;[‘ p, are such
that +"p"p.

Proof.
From Result 14 T"r"pg for every g in A'. Since geA we have
that ng T and therefore T"p"pg. From Result 1 this implies

T"p"II pg since the multiplication of partition pairs is a partition pair.
Al

Therefore T"p"p. ||

It should be noted that if A' = A in Result 15 that + has S.P.

Next we state the sufficiency theorem for reduced dependence.

Result 16 (Theorem).

Let a sequential machine coded by h into {0, l}n have state
partitions t and p such that +"r"p. If in addition 1 = Ij'\l Py and p = pg
where ge{l,...,n} and A < {1,...,n} then Rg(y,x) = Ig(yA,x) and
Sg(y,x) = Hg(yA,x) for every v in {0, l}n and for every input x.

Proof.

i) Suppose geA. Then p >t and since 1"r"p implies 7.p"p"p
we get .T"p"p since ge.p = 71. Therefore Yg(y,x) = Fg(yA,x) or Yg(y,x)
= v, M('yr ,X) + §g N(YI‘ X)) where ' =A - {g}. As in the proof of
Result 12 Rg(y,x) = yg Uly T ,X) + §1g l\—/l(yr ,x) and Sg(y,x) = Yg

e
V(Yr ¢ X) Yg W(yr /X).




i B TR 1 B T e, 2

28
ii) Suppose ggh. T"r"p implies t+p"p"p. Therefore Yg(y,x)
= Fg(yA,yg,x) from Result 2. Again we have certain freedoms on Pg.
Namely for every a e{s} such that §(a,x) is specified Fg(hA(a),hg(a),x)
= hg[é (a,x)]. Otherwise we may specify Fg in any manner. We specify
F t ’ that . . h f it
g o he (yA yg) such tha (yA yg) # (hA(a) g(a)) or any a ¢{s} with
s{a, x) specified as follows. If yA(a) = hA(a) for some a ¢{s} but

# h (a), then define F , ¥ .x)=F (h (a),h (a),x). For the
Yg g( g(yAyg ) g(A() g() )

’ that remain we define F with the constraint that F /Y X
(YA Yg) . g(yA Yg )
= Pg(yA,§g,x) which can clearly be done.

Since Y (y,x)=F /Y +X), it is clear that Y (y,x) =
g(y ) g(yA Yg ) g(y ) Yq
U(yA,x) + fzg W(yA,x) . Show U > W, Let v, e {0, l}A. Clearly there
n
exists vy,vy'e {0,1 1 tv =y =yv' buty #vy'. Suppose with
v.¥' e { } suchthath Y, vy Yg Yg pp
no loss of generality that =1,y ' =0, Then Y (yv,x)=F 'Y X
g v Yg Yy g(y ) g(yA Yq )
= U(yA,x) and Yg(Y ,X) = Fg(yA,yg,x) = W(yA,x). If either of y or y
is in {0, l}n— h({s}) then Fg(y:\ ,yé,x) = Fly, ,ygx) from the way we
specified Pg. Note that y ¢ {0, l}n - h({s}) means vy # h(a) for every
a e{s}. Fg(y/'\.y'g.x) = Fg(yA.yg.x) implies that U(yA,x) = W(y}\,x)
and therefore U('VA, x) = W( vy x). Suppose both of y,y' are in h({s}).
Then vy = h(a), y' = h(b). Again suppose y'g = 0 and yg =1, If

W('VA, x) = 1 then W(y['\,x) = 1 which implies that Yg(y' ,X) = Fg(yj'\,yg,x)

= 1, This means that Yg(h(b),x) = hg(5 (b,x)) = 1. Hence 5(b,x) ¢ pg[a]
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since hg(a) = yg =1, From the hypothesis hA(a) = h/\(b) implies that
r[a] = p[b] and hg(a) # hg(b) implies that plal # p[b]l. Since T"r"p
and §(b,x) e pg[a], it must be true that 6(a,x) ¢ pg[a]. This means
that Yg(h(a),x) = hg[a (a,x)] = hg(a) =1, Thus1l= Yg(y,x) = Uly, %)
= U(VA'X)' Thus we have shown that U > W. From Result 13 this implies

the theorem. ||

Machine D of Figure 7 can be used to illustrate Result 17, It

has been shown that (1,2, 3,4;5)"r"(1,2:3,4,5). If machine D is coded

such that o, = (1,2,3,4:5) and p, = (1,2:3,4,5) then from Result 17

Rz(yl'YZ'X) = Iz(yl,x) and 8,(y,.v,.%) = H,(y,,x) for every (yl,yz)
e{0, 1}2 and for every input x. For one particular coding R2 (Yl’ Yy x)

= x§r1, and Sz(yl,yz,x) = '}'71 X.

We now consider some of the properties of the relation "r",

Result 17.

T .1

If v"r"p and y < T then v"r"p.
Proof,

i) Since y <, we infer that y.p<T.p. From 1"r"p we know that
t.p"p"p and from Result 1 this implies that v.p"p"p.

ii) Leta,b ¢{s} and x be an input such that y[a] = y[b] and
olal # p[b] with §(a,x) and s(b, %) specified. Since r > y this implies

r[al=+[b]l. From r"r"p this implies that if §(a,x) ¢ p[b] then & (b, x) ¢ p[b]. ||
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Result 18,

Ifq-1 r'p and To L'P then»rl.q-z rp.

Proof.

This result follows from Result 17 since .-t

1"y =T

1

Result 19,

If 1 and p are partitions such that t"p"p and p > 7 then T"t"pl

and t'"r Py where 0y is any 2 block partition such that Py =0-

Proof,

Since 7"p"p and p, > p, we know that 7"p"p,. Since p, >

we deduce that T"t"p1 and t'"r Py-

In general t 1"r"p and TZ"r"p does not imply (71 + «rz)"r"p .

This means that for a given partition p there does not necessarily exist

"_n

a largest partition + such that t"r"p., This is shown by Machine E of

Lporr, <p where r. "r"p and

Figure 8, It is true that if either 9 1

1

72"r"p then (Tl + 'rz)"r"p when the machine is completely specified,

The next result in this section is concerned with the conditions such

that more than one flip-flop can have reduced dependence.
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Inputs
0 1
1 3 1
2 |14 | 2 (1,2,4,5:3)"r"(1,2,3,4;5)
States 3 || & 4 (1,2,4:3,5)"r"(1,2,3,4,5)
4 |2 | 4 (1.2,3,4,5)"not r"(1, 2, 3, 4;5)
5 | s 3

Figure 8, Machine E

Result 20 (Theorem).

Let M be a machine coded by h into {0, l}n such that
i) There exists state partitions in the r-relation as follows:

Ty r PyeTo r Porees T r P where P, is the partition associated with

ii) For every i in {1,...,n} there exists Ai_i {1,...,n} such

Then there is a realization with set-reset flip-flops such that

for every i in {1,...,n} Ri(y,x) = Ii(yAi,x) and Si(y,x) = Hi(yAi,x)
for every y in {0, l}n and for every input x,

Proof,
From Result 17 and i) of the hypothesis II-\I pj"r"pi for every
i
iin {1,...,n}. The theorem now follows from Result 16, ||
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The converse to Result 21 is also obviously true from Result 15,
In the remainder of the section we want to prove that partition pairs are
sufficient but not necessary for reduced dependence when a machine is
realized using set-reset flip-flops. We do this by defining a relation

"r" which is the same as the relation "r" except when "I p it is not

required that p be a 2 block partition.

Definition 9, State partitions ¢+ and p are in relation - r 0

iff v+ and p satisfy 2 and 3 of Definition 8.

Note that if +"p"p then r"r"p. Figure 9 gives an example of

the relationr, Let 1 =1(1,3;2,4,5) and p = (1,2:3,4;5). Since
10 =(1:2:3:4;5) = f clearly r.p"p"p. Also &(1,0) ¢ p[1], §(3,0)
¢ pl3l, 5(2,0) ¢ pl2], 6(4,0) ¢ p[4], 6(5,0) ¢ p[5], 8(1,1) e p[1], §(3,1)

e p[3] while pls(2,1)1=pls(4,1)] =p[s(5,1)]. Hence t"r"p.

Inputs

(1,3;2,4,5)"r"(1,2:3,4:5)
States

g b N =
gl W b = DN O
W W =]

Figure 9. Machine F
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It is convenient to have the following properties.

Result 21.

If r and p are such that +"r"p and if 1

ni_"u

<7, then'r1

1

Proof.

Identical to the proof of Result 17,

Result 22.

If +"r"p and py 2P, thent'r"p. .
Proof.

i) Leta,b e{s} suchthat r[a] = r[b] and pl[a] = pl[b] and
let x e{x} such that §(a,x) and §(b, x) are specified. If pla] = p[b]

then pls(a,x)] = pls(b,x)] since T.p"p"p. This implies that pl[a(a,x)]

pl[é (b,x)] since Py P If plal # plb] then either pls(a,x)]

ols(b,x)] which again implies pl[é (a,x)] = pl[é (b, x)] or 5(a,x) ¢ plal
and §(b,x) ¢ plb]l. Since pl[a] = pl[b] this implies §(a,x) e pl[a]
and §(b,x) ¢ pl[b]' Thus t-p"p"p.

ii) Leta,b e{s} suchthat +[al=r[b] and p,lal # p,[b] and let
x ¢{x} such that s(a,x) and §(b, x) are specified. Since oy 2p we have
that plal # p[b] and therefore either p[§(a,x)] = pls(b,x)] which implies
that pl[é(a,x)] = pl[a(b,x)]; that is, 8(a,x) ¢ plal and s(b,x) ¢ plb].

Since p, > p this implies that s(a,x) e pl[a] and §(b,x) ¢ pl[b]. |l
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The next result is the principal result concerning_r .

Result 23 (Theorem).

If a machine is coded by h into {0, l}n such that +"r"p where
o= Igpi and p = I o) with A' < {1,...,n} and A < {1,...,n} then Rg(y,x)
AI
=1 (y,,x)and S (y.,x)=H (y,,x) for every ge\A' where y e{O,l}n and x
g A g g A
is an input,

Proof.

Let geA' . Then since Pg2 P and 7"r"p we deduce that «+"r Py

n_n

from Result 22. Since pg is a 2 block partition this means t'"r pg'

From Result 16 this implies the result,

Result 24 (Corollary).

" "

If a machine is coded by h into {0, 1}n such that 7"p"p where
T = I/EDi and p =/{II P, withA' < {1,...,n} and A < {1,...,n} then
Rg(y,x) = Ig(yA,x) and Sg(y,x) = Hg(yA,x) for every gel'.
Proof.
T"p"p implies 1"r"p which from Result 23 implies the result.
Result 24 says the partition pairs are sufficient for reduced de-
pendence when a machine is realized using set-reset flip-flops. The

following example shows they are not necessary by showing that the

relation "r" is not necessary.,
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Consider Machine G in Figure 10. If Machine G is coded by

h into {0,1}° such that o, = (1,3,5:2,4), o,=(1,2,3,4/5) and

p3= (1,2:3,4,5) then we know from Result 16 that S.,R.,S. and R

1771772 2
are functions of only Y, and the input for every (yl,yz,ys) e {0,1} 3.

But the partition (1,2;3,4,5) is not in relation r with (1, 3;2,4;5) which

equals SRLPE Thus "r" is not necessary for reduced dependence.

Inputs
0o 1
1 || 2 1 (1,2:3,4,5)"r"(1,3,5:2, 4)
2 a4 | 2 (1,2:3,4,5)"r"(1, 2, 3,4;5)
States 3 1 3 (1,2:;3,4,5)"not £ "(1, 3;2,4;5)
4 3 | 4
5 || 5 1

Figure 10, Machine G

In this chapter we have shown that partition pairs are neither
necessary nor sufficient for reduced dependence of the input functions
to trigger flip-flops. It has also been shown that partition pairs are
sufficient but not necessary for reduced dependence of the input func-
tion to set-reset flip-flops., In order to analize a machine completely
with respect to trigger or set-reset type realizations it is necessary to
consider all two block partitions of {s}. There are 2q~1—1 of them for

a g state machine, For each of these partitions p one has a set of




36

partitions t(p) where the elements of t(p) are partitions r such that

t"t"o. For the r relation there is a set of partitions v(p), whose ele-

n..n

ments are partitions y such that +"r"p. In the general situation this is
as much as one can say. If the machine is completely specified, then
for each p there is a largest partition v such that t+"t"p. Thus in this

case we need only consider each p and the largest partition + such that

T I p. If one considers partition pairs, then one can compute the Mm

pairs (Reference 1) and the Mm pairs imply all other partition pairs.

Thus it is clear that one cannot store the information regarding the t-pairs

and r-pairs as compactly as one can for the partition pairs, It should
however be noted that the computation of the Mm pairs of Reference 1 is

a difficult task in general,




CHAPTER 3

Feedback

Introduction

In previous studies of feedback in sequential machines (Reference
3) the machine was considered to be realized using unit delay memory
elements. In this chapter we study feedback in sequential machines
which are realized with trigger or set-reset flip-flop memory elements,
It is shown that the different memory elements affect the feedback
characteristics of a sequential machine. We begin by restating some

results given in Reference 3,

Definition 10. Let M = ({s},{x},{0},6,)) be a sequential

machine. Letr and p be state partitions and let f:{s} x {x} - D be
some function where D is a set. Then t"pf"p iff for every two states
a,b such that +[al = r[b] and for every input x such that s(a,x) and

§(b,x) are specified and f(a,x) =f(b,x) then pls(a,x)] = pls(b,x)].

The next theorem relates the relation pf to unit delay realizations.,

Result 25 (Theorem).

Let M be a machine coded by h into {0, l]n. Also let = ]l;I Py
where A< {1l,...,n} and letp = pg where ge{l,...,n}. Then 1"pf"p
iff Yg(h(a),x) = Fg(hA(a), f(a,x),x) when s¢(a,x) is specified.

37
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Proof.

i) Suppose t"pf'p. Define Fg as follows, For every (yA,d,x)
where deD and y, € {0,1} for every i in A let Fg(yA, d,x) = hg[é (a,x)] if
there exists a e¢{s} such that §(a, x) is specified and (hA(a), f(a, %))
= (yA'd) . Show Pg is well defined. If there exists a,b ¢{s} such that
5(a,x) and §(b, x) are specified, tlal = v[b] and f(a, x) = f(b, %) then
pg[é(a,x)] = pg[6 (b, x)] which implies hg[a (a,x)] = hg[a (b.x)] hence Fg
is well defined., For all (yA,d,x) such that there is no a e{s} and input
X such that (hA(a), fla,x)) = (yA,d) then Fg(yA,d,x) can be specified in
any manner,

ii) Suppose hg[a(a,x)] = Fg(hA(a), f(a,x),x). Leta,b ¢{s} such
that §(a,x) and §(b,x) are specified, t[a] = r[b] and f(a, x) = f(b, x).
Since t[al] = t[b] implies hi(a) = hi(b) for every icA this implies from the

hypothesis that hg[é(a.x)] = hg[é (b, x)] which implies pls(a,x)] = pls(b,x)]. ||

Definition 11. Let M be a machine and v a state partition of M

1 - wogn 1oy _ 1, i
then mpf('r) Mp|r"pf"p) and m (r) mpf(mpf(T)) .

Our mpf is the same as the m operator of Hartmanis and Stearns.
We now give the result of Hartmanis and Stearns on feedback which we

shall not prove, We do not use this result except to relate flip-flop

realizations to delay realizations.
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Result 26 (Theorem).

Let M be a g state sequential machine and let f:{s} X {x} - D,
Then M can be realized using f for feedback iff m?)_fl () = 4. 1Iisthe

unit partitions,

Feedback and Trigger Flip-Flop Realizations

In order to determine when a function f can be used as feedback
in a machine M realized with trigger flip-flops we define the following
relation. The definition of what we mean by the expression "using f for

feedback" will be given later,

Definition 12, Let t and p be state partitions on machine M and

f:{s} x {x} - {0, 1}{’ where £ is a positive integer, Then 7"tf"p iff

1, p is a two block partition

2, t-p"pf"p

3. For every 2 states a,b and for every input x such that §(a,x)
and s(b, x) are specified, t[a] = rlb]l, plal # plbl, and f(a,x) = £(b, %)

then pls(a,x)] # pls(b, x)].

If we have a machine M and a function f:{s} x {x} - {0, 1}{’ and
if we code M with h into {0, 1}n, then we can define a function f' on
{0, l}n by f' (h(a),x) = f(a,x). If h is not onto {0, 1}n then we extend

f' in any manner to all of {0, l}n. We make no distinction between
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fand f'. It might be noted that we use the set {0, 1}& rather than D
for the range of f. We do this because we are interested in a reali-
zation which can be realized in a practical since. In other words the
output of f will be fed into logical gates, hence it is convenient to con-
sider the outputs as n tuples of {0, 1}. It is necessary to prove the
next two results before we can characterize feedback in trigger flip-

flop realizations,

Result 27 (Lemma).

t
Let machine M be realized with the g b memory element a trigger
flip-flop where h:{s} - {0, 1}n is the coding function and ge{1l,...,n}.
If
i) £{s}x {x} - (0,1} and A < {1,....n} with ggA.
ii) F (y,x) =y Mly,, fly,x),x) + vy Ny, fly,x),x) for ever
) g(y ) Yg (v, (y.x) Yg (yA Y y
xe{x} and ye{0, 1}n~,wh'er,e"M = N.
Then T X)) =G , fly.x),x).
g(y ) g(yA (y,x),x)
Proof,
- - n
Since T (y,x) = Y (y,x)+ Y (y.x) for every ye{0,1} and
g(y ) Vg g(y v Y by y ve{0,1}
for every xe{x} if we substitute for Yg and simplify we get that
T (v,x) =y Ml(y., fly.x),x) +y Ny , f(y,x),x). Since M = N this
g(y ) Yg (yA (v, x),x) Yq (yA (y )

implies Tg(y,x) = N(yA, fly,x),x). |
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Result 28 (Lemma).

Let machine M be coded by h into {0, l}n. Let = l/'\l p; where
A<{l,...,n}, letp= pg where ge{l,...,n} and let f:{s} x {x}—»{O,l}f’,
If ¢"tf"p then Tg(y,x) = Gg(y/\' fly,x),x).

Proof.

Since t"tf"p we know that r.p"pf"p and from Result 25 this
implies that Yg(y,x) = Fg(yA,yg, f(y,x),x) for every y in {0, 1}n.

i) Suppose geA. Then since Tg(y,x) =Y, ?g(y,x) + §'g Yg(y,X)
we deduce that Tg(y,x) = Vg f‘g(yA,yg, fly,x).x) + ;Ig Fg(YA,Yg: f(y, %), x)
= Gg(YA’ Hy, %), x).

ii) Suppose ggA. Then Yg(y,x) = Yg M(yA, f(y, %), x)

+ ;rg N(yA, f(y,x),x) where M(yA,d,x) = Fg(yA’Yg =1,d,x) for every

d ¢{0, 1}& and N(yA,d,x) = Fg(yA,yg = 0,d,x). Recall that there are
certain freedoms on Fg. Namely Fg(hA (a), hg(a), f(h(a), x),x) = hg[&(a,x)]
if §(a,x) is specified. Otherwise Fg(yA,yg,d,x) where d ¢{0, 1}& is
arbitrary., Specify Pg as follows. If Fg(yA, yg, d,x) is not determined

as above, let Pg(yA,yg,d,x) = f‘g(yA,§g,d,x) where d ¢{0, 1}*’, v e;{0,'1}n
and x ¢{x}. Show Fg(yA,yg,d,x) # Fg(yA,§g,d,x) for all y ¢{0, 1}n,

x ¢{x} and d ¢{0, l}f’. We must only consider the case where there
exists a,b ¢{s}, x e{x} such that hA(a) = hA(b)’ hg(a) # hg(b), f(a, %)

= f(b,x) and ¢§(a,x) and §(b,x) are specified. In this case
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Fg(hA(a)'hg(a)’ f(h(a) , x),x) = hg[é(a,x)]. But hA(a) = hA(b) implies
that r[a] = v[b] and hg(a) # hg(b) implies that plal # p[bl. Since
f(a,x) = f(b,x), s(a,x) and s(b,x) are specified and 1"tf"p, this
implies that pls(a,x)] # pls(b,x)] and therefore that hg[& (a,x)]
?{ h [6(blx)]. Thus F (h (a)lh (a), f(h(a)lx)lx)
g g A g
#F (h, (b),h (b), f(h(b),x),x).
g A g
Show M = N if Fg is so specified. This is clear since M(yA,d,x)
= Pg(YA:Yg = l,d,X) 7! Fg(yl\'yg = O,d,X) = N(Y

A
Y; ef0, 1}{’ for every ieA, X ¢{x} and d ¢{0, 1}}(’. From Result 27 this

,d,x) for every y A with

implies the theorem. ||

Result 29 (Theorem).

If machine M is coded by h into {0, 1}n and realized with trigger
flip-flop memory elements such that Tg(y,x) = Gg(yA, f(y,x),x) where
A<{l,...,n} and ge{l,...,n} and f:{s} x {x} - {0, 1}&, then v"tf"p

where 1= [ p,andp = .
A pl p pg

i) Suppose geA. Then t"tf"p is equivalent to t"pf"p since
>1. Ingeneral Y (v, x)=v T (v, x)+y Tly,x) thusY (v,x
P> g g(y ) Yg g(y ) Yg {y.x) g(y )
= G ,fly,x),x)+y G , Hy,x),x)=F , Iy, x),x). Therefore
Yg g(yA (y,x),x) Yg g(yA (y,x),x) g(yA (y,x),x)
from Result 25 ¢"pf"p.
ii) Suppose ggh. Then again Yg(y,x) = yg ag(yA, fly,x), x)

+ ;’g Gg(yA, fly,x),x) = Pg(yA,yg, f(y,x),x) and therefore from Result 25
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T-p"pf"p. Leta,b e{s} and x ¢{x} such that r[a] = r[b], plal
# olbl, f(a,x) = f(b,x), and s(a,x) and §(b,x) are specified. +[al = +[b]
implies that hi(a) = hi(b) for every ieA and plal # plb] implies that
hg(a) # hg(b). Assume hg(a) = 1 which implies hg(b) = 0. Then Yg(h(a),x)

=G g(hA(a)',' f(h(a), %), x) and Yg(h(b),x) = Gg(yA, f(y,x),x). But since

(hA(a), f(h(a), %), x) = (h[\(b)' f(h(b),x), %), this implies that Yg(h(a),x)

= ')_(g(h(b),x). Since §(a,x) and §(b, x) are specified, this means that
hg[s (a,x)] # hg[a(b,x)] which implies that pls(a,x)] # pls(b,x)]. The
same argument yields the same result assuming hg(a) = 0 which implies

hg(b) = 1. Therefore r"tf"p. ||

With these results out of the way we can consider feedback in
machines realized with trigger-flip-flop memory elements, First we
must define this concept. The basic idea is to lay the machine out from
left to right in such a way that the input function to the ith flip-flop can
be computed from f and the state of that portion of the machine which
lies to the left of the ith flip-flop. This is shown in Figure 11, It

should be noted in the figure that the set of /\r - A _ flip-flops consists

r-1

of those flip-flops i such that ig'\.!\;— Ar—l .
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S _Input 5 5 >
A ANy ArAr-)
i >{C.L. Fhp 1P P
Fi ops \Elo J Flops,
N > >— . |
) C.L
< < <~—f

- C.L. dénotes combinational logic

A1<A2<"'<Ar5{1,...,n}

Figure 11

Definition 13, Let M be a machine and f:{s} x {x} - {0, 1}*’.

Then M can be realized with trigger flip-flop memory elements using f
for feedback iff M can be coded by h into {0, l}n such that

1. There exists {Al, oo ,Ak} a set of positive integers such
that u < v implies Au < AV.

2. If icA. then Ti(y,x) = Gi(f(y,x),x) for every y ¢{0, 1}n

1

and x e¢{x}.
3. Hieh -A . wherel<r<k Ti(y.x) = Gi(yf\r_l'f(y'X)'X)

4, N P, = g where o is the partition associated with h,.
Ay

It should be noticed that our definition of feedback depends on

the memory element used. In order to prove the important theorem of
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this section we define the following quantity and prove a property

about it.

Definition 14, Let M be a machine and 1 be a state partition

1 _— " " j'+1
of M. Then mtf(q-) ={p|r"tf"p} and m, ¢

_ b i
(r) = mtf(mtf('r)) for every
integer i. If {p|r "tf"p} = ¢ the empty set we define m%f(fr) =1 the unit
partition.

We frequently designate m%f(-r) by mtf(T) . It should be observed

that + and mtf(T),are not in the relation "tf".

Result 30 (Lemma).

If r.v_, and p are state partitions such that r, <1 and 7"tf"p

1
where f:{s} x {x} - {0,1}’?’ then =

1

ltfp.

Proof.

Letrrl[a]=q—1[b]. Then tlal = 7[b] since T >r,. If plal = plbl,

1
f(a,x) = f(b,x) and s(a,x) and (b, x) are specified then ol[s(a,x)
= pls(b,x)] since r-p"pf"p. If plal # plbl, f(a,x) = f(b, x) and s(a, x)

and (b, x) are specified then pls(a,x)] # pls(b,x)] since "tf"p. ||

Result 31.

Let M be a machine and f:{s} x {x} - {0, l}L. If + and T, are

state partitions such that < T then mtf(Tl) < mtf(T) .

1
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Proof.

Let p be such that v+"tf"p then . "tf"p from Result 30. This

1

implies mtf('rl) < mff('r) Al

Result 32.
i+1

Let M be a machine and f:{s} x {x} - {0, 1}{’. Then m.

(1 <

i .
mtf(T) for every ie{1,2,...}.

Proof,
i) Show m2 (D < m1 (). Clearly m1 (D <1 Thus m [ml (D] < m. (D
e S Mgt gt = tf e S My

from Result 31 which implies mff(I) < mtf(I) .

i+1
ii) Suppose m’

i i+l i
g D <m (D). Then mtf[mtf (Nl < mtf[mtf(I)] from

(1).

i+1
tf

. S SR 3| 2o
It is clear that if mtf(I) m g (I) then m, e (D mtf(I)’ Therefore

i+
Result 31 and therefore mltf2 (I)<m

since I can be refined at most g-1 times if M is a q state machine we
know that mff—l(l) = m?f(I) .

It should be noticed that mtf(fr) is a fairly difficult quantity to
calculate. At this point we must consider every two block partition p
and see if 71"tf"p and multiply these p together. Later we will give a
better method. But first we prove a major result and then give an example

of some of these concepts.

Result 33 (Theorem).

Let M be a machine and f:{s}x {x} - {0, 1}{’. M can be realized
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with trigger flip-flops using f for feedback iff ngl (I) = # where g is
the number of states of M,
Proof.

Suppose M can be realized with trigger flip-flops using f for
feedback. Then M can be coded by h into {0, 1}n such that Definition
13 is satisfied. Let T II\Ir pj'

1. From 2 of Definition 13 and Result 29 I"tf"pi when ieA,
and Py is the partition associated with hi' This implies that mtlf(I) < }'\I pj
and mtf(I) ST

2. From 3 of Definition 13 and Result 29 [I pj"tf"pi for
A

r-1
every i ?Af_Ar—l . This together with Result 30 implies that 1[I pj..tf-.pil,
r-1
that is, Tro1 tf Py for every 1eAr.
r-1
3. From 1 we know m (D) <7,. Assume m (D<r , for

every r such that 2 < r < k where k is given by Definition 13. Show
r ' = t i 111 _
mtf(I) <t . From 2 mtf(Tr—l) < }\Ir p; =T, From the inductive hypo

thesis T > m:f-l(l) and therefore, from Result 31 we deduce that

r-1 . r
mtf[m f Dl < T, or equivalently ,mtf(I) ST

4, Show mq“1 (I) = #. From 4 of Definition13 M p, =1, = f#.

Hence m]:f(I) T T #. Therefore m]:f(I) = f. From the comments after

-1
Result 32 this implies that m?:f n=g0.
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-1
Suppose m?f (I) = #. Let k be the first integer such that

m]:f(l) = g. Thenk < g-1,

1. Let E, = {pi|ie/\1} be a set of partitions with the properties

that I"tf"pi for every iel

1 and [l;[ P, = mtf(I). Such a set exists

1
since {p |I"tf“p} has the properties. However, it should be noted

that one may not need to include all of these partitions in E1 .

2. Let ]E:2 = {pi\ie/\z} be a set of partitions with the properties

and Il p, = m2 (). Again
AZ 1 tf ‘

such a set exists since E2 ={p |mtf(I)"tf"p} has the required pro-

that E. >E., mtf(I)"tf"pi for every ieh

2 1 2

perties, This follows from the fact that mff(l) < mtf(I) .
3. Let Ek = {pi|ieAk} be a set of partitions with the properties

that E, > E

_k
K ko1’ and II pi—mtf(I).

Ay

The set Ek = {p \m]:f—l(l) "tf"p} satisfies these properties since
k-1
tf

k—l [Twal] .
m e (1) "tf Py for every 1e:Ak

m]:f(I) <m,_ " (I). Again it should be noted that one may not need to

include all these partitions in Ek'

4, For every i such that ief, , let hi(a) = hi(b) & pi[a] = pi[b]7

kl
i.e. let hi be the function implies by P, Since /l;l 0, = m]:f(I) =4,

h is 1-1. Note that the range of h is {0,1}’K. Thus if we let n be the

number of elements in /\k to be consistent in notation then h:{s} - {0, 1}n.

5. From Result 28 since I"tf"pi for every ie/\l we know that

Ti(y,x) = Gi(f(y,x),x) for every y ¢{0, l}n. Also from Result 28 since

__r-1 r-1, \u.en .
I Py = Mg (I) and M (D)"tf 0y when 1@,/\r we know that

Ar— 1
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Ti(Y,x) = Gi(y f(y,x), x) for every ieAr. Therefore Definition 13 is

Ara ’
satisfied and M can be realized with trigger flip-flop using f for feedback. ||

An example of this result is given in Figure 12 by machine H.
{s} =1{1,2,3,4,5} and ¢ is given in the figure. Also a function
f:{s} x {x} - {0,1} is given in Figure 12, In machine H I"tf"(1,2:3,4,5)

and mtf(I) =(1,2;3,4,5) since this is the only partition with this property.

(1_.—57m)"tf"p iff p is one of (1,2;3,4,5),(1,4:2,3,5) or (2,4:1, 3,5)
and therefore m (I) = (1;2;3, 5;4) . (.1_5-3__) 4)"tf"p for every two block
partition ¢ and therefore mtf(I) = @ which implies p can be realized with
trigger flip~-flops using f for feedback. Let Py = (ﬁ;m),

p, = (1,4:2,3,5) and o, =(1,2,3,4;5). Then A = {1}, A, ={1,2} and
1\3 ={1,2, 3} satisfies the properties given in the proof of Result 33,

In this case E, = {pl}, E2 = {pl,pz} and ]33 = {pl,pz,pS} . A coding

function h corresponding to PPy and p3 is given in Figure 12,

If a machine can be realized using f for feedback and f is a con-
stant, then we say f can be realized without feedback. Machine]J in
Figure 13 gives a machine which can be realized without feedback using
trigger flip-flops when f is any constant function., Note that I"tf"p iff

p=1(1,2:3,4,5) and (1,2;3,4,5)"tf"p iff p = (1,3,4;2,5),(1,5;2,3,4) or

(1,2:3,4,5) and finally (1;2:3,

;5)"tf" o for every p which is a two block

1?f(I) = (1;2:3,4:5) and

partition. Therefore m, (I) (1,2:3,4,5), m

mff(I) = f.
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Inputs Inputs
0 1 0 1
1 1 3 1 0 0
2 3 4 2 1 0
States 3 4 1 States 3 0 1
4 5 2 4 0 1
5 1 2 5 1 0
& f
Machine H.
h(1) = (0, 0,0) Tl(yl,yz,y3,x) =x f(yl,yz,y3,x) + x
h(2) = (0,1, 0) T2(y1,y2,y3IX) =Y f(yllyz,y3,x) + xy,
h(4) = (1,0,0) T3(y1,y2,y3,x) =y,X f(yl,yz,ys,x)
= + <y -

0 1 0 1 0
000 {| 000 | 110 { 000 | 110 | o
010 | 110 | 100 | 100 | 110 || 1
110 | 100 | o000 | 010 | 110 |} o
0
1

100 111 010 011 110
111 000 010 111 101

A bW N
O = = O O

Y T f

Figure 12,




o

States

[ 2 B O o B S R

000
010
111
110
100
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Tl(ylly2,y3,X) =X

= ~ +—'
TZ(YI'YZ'Y3'X) xy, + %y,

=y v. X+
T3(y1,y2,y3,x) Y,¥ X+ xy,v,

Figure 13,

Inputs

0 1

5 2 h(1) = (0,0,0)

3 1 h(2) = (0,1, 0)

d 4 h(3) =(1,1,1)

1 3 h(4) = (1,1,0)

2 5 h(5) = (1,0,0)

Machine J.

Inputs Inputs

0 1 0 1
100 010 100 010
111 000 101 010

d 110 d 001
000 111 110 001
010 100 110 000
(Yl’YZ'Y3) (Tl’Tz’T3)

Now we relate feedback for the unit delay case to feedback

with trigger flip-flop memory elements,

One result we get is that the

set of machines which can be realized without feedback using unit

delays and the set of machines which can be realized without feedback
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using trigger flip-flops are disjoint when the machines are completely

specified, Before we prove this result we consider a lemma.

Result 34 (Lemma).

Let M be a machine, f:{s} x {x} - {0, 1}1’ and +"tf"p. Let
a,b e¢{s} such that r[al = v[b]. If there exists x ¢{x} such that f(a, x)
= f(b,x) and s(a,x) = (b, x) then mtf(T)[a] = mtf(T)[b].
Proof,

Consider any p such that r"tf"p. If plal # plb] then pls(a,x)]
# pls(a,x)] which is impossible since §(a,x) = §(b,x). Thus plal = o[b]
which implies mtf(T)[a] = mtf(T)[b].

If 5:{s} x {x} - {s} and {xi}rl1 is a sequence in {x} we define
6(a,{xi}?) =aifn=0, 6(a,{xi}?) =6fa,x))ifn=1landif n>1 we
inductively define &fa, {xi}rll) = s[s(a, {x)) r;_l ),Xn] . With this

notation we can prove the following result.

Result 35 (Lemma).

Let M be a completely specified machine and f:{s}x {x} - {0, l}){“,
Let there exist a,b e{s} with a # b and a sequence {xi}?_l with g > 2 in
{x} such that s(a, {xi}jl) and §(b, {xi}jl) are specified when 1 < j < g-1
and, in addition, f[s(a, {xi}jl_l),xj] = fls(b, {xi} jl_l )'Xj] for every j

- -1
such that 1 < j < g-1. Then mgfl(l) = g implies that mc,if () #4.
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Proof.

Since I[a] = I[b], the hypothesis implies that m;f(l) fal = mi)f(I) (bl

g-1
pf

-1 -
s(a, {xi}? ) = s(b, {xi}? 1) . Let r be the first integer such that 5(a, {Xi}z)

forall j< q-1. Thus m__ (I) = #f and the hypothesis implies that

i

r , _ r-1
6(b,{x.1} ). Thenl<r<g-1and if a, = sla, {x}; ) and b,

r-1 _ j
5(b, {xi]1 ) then a, # b1 and 5(a1,xr) = 5(bl,xr). Show mtf(I)[aI]

mif(I) [bl] for every j such that j is a positive integer, Clearly I[al]

I[bl] and since f(al,xr) = f(bl,xr) and a(al,xr) = 6(b1,xr) from Result

L . _ k
34 this implies that mtf(I) [al] mtf(I)[bl]‘ Suppose mtf(D [al]

k . L . k
mtf(D [b1]. Again from Result 34 this implies that mtf(mtf(l))[al]

K K+1 _ k+l -
mtf(mtf(I))[bl] or m (I)[al] =m (I)[bl]. If we let j = g-1 then

m?f_l(l) [a,] = m?f_l(I) [b,] where a, #b,. Therefore m,?f_l(l) 7. |

From Result 35 we get the following result on feedback free

machines.

Result 36 (Corollary).

Let M be a completely specified sequential machine with g
statesand g> 1.

. a-1,, _ g-1

i) If mpf (I) = 4, then m . () #4.

) a-1,.. g-1

ii) If m e (I) = 4, then m e (n#4.

In particular the set of machines which can be realized without

feedback using unit delays is disjoint from the set of machines that
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can be realized without feedback using trigger flip~flop memory elements,
Proof.

i) Since q > 1 there exists a,b e¢{s} such thata # b. Let
{xi} ?_1 be any sequence in {x} . Since f is a constant, Result 35 holds

-1
and m> (n#4.

tf

. g-1 . g-1 o

ii) Suppose mpf (1) = 4, then from i M (1) # 4 which is a con-
tradiction. Therefore mggl(l) =g,

The last statement follows from Result 33 and 26, ||

It is clear Result 36 does not necessarily hold if the machine is
not completely specified. For example, one could consider a machine
where ¢§(a,x) is not specified for any state a and input x. We now turn

our consideration to the computation of mtf('r) .

Definition 15, Let M be a machine and f:{s} x {x} - {0, 1}{’.'

Let 7 be a state partition.

1. Let A(r) = {(b,c)|r[b] = r[c] and there exists x such that
f(c,x) = f(b,x) and §(b,x) = 8(c,x)} U {(b,c)| there exists a ¢{s} and
input x such that f(a,x) = f(b,x), t[al = +[b] and ¢ = §(a, x) while
a=8(b,x) ors(a,x) =aandsb,x) =cj}.

2. Let A#(fr) be the smallest equivalence class which contains

A(t) and let By be the state partition implied by A#(T) .
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Result 37,

If r abd B, are defined as in Definition 15 then 8, < mtf(T).

1
Proof,

Let b,c ¢{s} such that Bl[b] = Bl[c]. Let p be a partition such
that +1"tf"p. |

i) Suppose (b,c) eA(r). If r[b]l =1lc] and there exists x such
that f(c,x) = f(b,x) and s(c,x) = §(b,x) then p[b] = plc] from Result 34.
If there exists a e{s} and x ¢{x} such that f(a,x) = f(b,x), 7[al] = 1 [b]
and ¢ = s{a, x) while a = §(b,x), then if plal = p[b] we have that
plsla,x)] =pls(b,x)] since r.p"pf"p or plcl = plal = plbl. If plal
# p[bl, then pls(a,x)] # pls(b,x)] or plc] # pla]l which implies p[b]
= plc]l since p has only two blocks. Therefore pl[b] = plc]. The proof
for the case a = §(b,x) and §(b,x) = ¢ is identical.

ii) Supposeb=ao, c=a k>0 and (ao,al),(al,az),...,

k+1

(ak,ak+1) are all in A(r). Then from i) p[ai] = p[ai+1] for every i

]

0< i<k. Since p is a partition, this implies pl[b]l= p[ao] = p[ak+1
= p[c].

Cases i, ii cover all cases for b and ¢ such that Bl[b] = Bl[c]
except when b = ¢ which is obvious. Thus Bl[b] = 61[0] implies

plb]l = plc] for every p such that t"pf"p. Therefore mtf(T)[b]

=m_(r)lc]. This implies that By<m(r). |
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It should be noted that A(r) can be determined by inspection.

One has only to observe that (b,c) e A(r) if s(b,x) = §(c, x) for some x
with f(a, x) = f(b, %) and if any twd ofa, b, 6(a,x), §(b,x) are equal

when t[al = r[b] and f(a,x) = f(b, x) then the other two are a pair in A(r).

Definition 16. Let M be a machine and let 7, Bi be state

partitions such that mtf(T) 28, where i > 1,

1. Let B(ai) = {(Bi[b], Bi[c]) |rlb] = rlc] and there exists input
x such that f(b, x) = f(c, x) and B.l[é (b, x)] = Bi[é(c,x)]} U{Bi(b),ei(c))ls.l(c)
= Bi[é (a,x)] and Bi[a] = ei[é (b, x)] or Bi[a] = Bi[a (a,x)] and ei[c] = Bi[é(b,x)]
for a,b e{s} and x e{x} such that t[a] = r[bl, f(a,x) = f(b,x)}.

2, Let B#(Bi) be the smallest equivalence relation which con-
tains B(Bi) . Let Biry be a partition on {s} defined by Bi+l[a] = Bi+l[b]

1ﬁ(eJaLerD eB#mQ.

Result 38.

< m, (r) and B

Biry = Myg i1 = By

Proof.

Let b,c e{s} such that Bi+1[b] = Bi+1[C] which implies that
(Bi[C], Bi[b]) € B#(Bi). Let p be a partition such that t"pf"p.

i) Suppose (Bi[c], Bi[b]) e B(Bi). if 1[b] = 7[c] and there exists
x such that f(b, x) = f(c, x) and ei[é(b.x)] = Bi[é(c.x)], then pls(b, x)]

= pls(c,x)] since p > B,. Because r"tf"p, plbl # olc] implies
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pls(b,x)] # pls(c,x)], which is a contradiction, thus pl[b] = plc]. If
there exists a e{s}, x e{x} such that t[a] =+[b], f(a,x) = f(b,x) and
8 i[C] =g i[é (a,x)] while Bi[a] = 'Bi[é (b, x)]; then plal = p[s(b,x)] and
plcl = ols(a,x)] sincep > B, - If plal = plb] then pls(a,x)] = pls(b, x)]
since T-p"pf"p which implies plal = pls(a,x)] = plcl. Therefore p[bl
= plcl. If pla] # p[b] then pls(a,x)] = pls(b,x)] since "tf"p, This
implies plc] # olal and therefore p[b] = plc] since p has only two blocks.
Therefore (Bi[c], Bi[b]) e B(Bi) implies p[b] = plc]. The case when si[a]
= Bi[é (a,x)] and Bi[c] = Bi[z‘)(b,x)] is proved in a similar manner.

ii) Suppose Bi[c] = Bi[ao]’ Bi[b] = Bi[ak+1] and (Bi[ao], Bi[al])’
(Bi[al]' Bi[az]). . .(Bi[ak], Bi[ak+l]) are such that (Bi[aj], Bi[aj+l] € B(Bi)
when 0 < j < k., Then from i) p[aj] = p[aj+1] for every j such that

0<j< k. Therefore plc]= p[ao] =pla,_, .1 =plbl.

k+1
Parts i, ii imply that if (Bi[c], Bi[b]) € B#(Bi), then plb] = plc]

which implies that mtf(T)[b] = mtf(T)[c]. Therefore mtf(rr) 2B
Results 37 and 38 imply a way to compute mtf(q-). First compute

B, as in Definition 15. Then using By compute B, as in Definition 16,

Continue until Bir1 = By for some i > 1, This must happen since

Bir1 =8 for every i and {s} is finite. Let o(r) = Bi' One must then

consider only those p > g(r) to see if v"tf"p when one computes mtf(T) .

For an example of this consider machine H in Figure 12, Here

it is seen by inspection that A(I) = {(3,4),(4,5),(3,5)} which implies
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A#(I) ={(1,1),(2,2),(3,3),(4,4).(5,5),(3,4),(4,5),(3,5),(5,3).,(5,4),

(4,3)} and By = (1:2:3,4.,5). B, could have been easily determined

from A(I). Now compute B,- Again by inspection of Figure 12 B(el)

= {(T;E)} and B#(Bl) = ((1:2).(3.4,5:3,4,5),(2:1), (1:1), (2:2). Therefore

Bz =(1,2:3,4,5). Compute 53. By inspection B(BZ)= ¢ and therefore

B#(az) = {(1.2,1,2),(3,4,5.3,4,5)}. Hencep,=(1,2/3,4,5) =5, and
therefore g(I) = By- From Results 37, 38 we know that a(l) < mtf(I) .
Hence to compute mtf(I)’ we need only consider all 2 block state
partitions p such that p > 8(I) and an easy check shows I"tf"g(I) and
hence mtf(I) =(1,2:3,4,5). We have made this computation longer than
needed. B(Bi) can be written down by inspection of the state table and
By AN be written down directly from B(ei) without looking at B#(Bi) .
Let us again consider machine H in Figure 12, We have already
determined that when we begin with I g(I) = (1,2;3,4,5). Repeat the

calculations this time beginning with + = 8(I). Then by inspection A{y)

= {(3,5)} and By = (1;2:3,5:4). Continuing B(Bl) = ¢ and therefore B,

=By Thus when we begin with v = g(I) we get 9(r) = a(s(D)) = (1;2;3,5;4)

which we label as ez(I) . ez(I) must be less than m 2(I) . Repeat the

tf
process letting 1 = eZ(I) By inspection of Figure 12 A(r) = ¢ and
therefore g, = B, = (1;2:3;4;5). Thus a(r) = e(eZ(I)) = 93(1) = (1;2:3:4;5).

And 93(1) <m 3(I). In this case el(I) = mtf(I)’ ez(I) = mth(I) and 93(1)

tf

3
= mtf (I). To check a machine for feedback one should do a computation
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as above, If one does not end up with the 4 partition, the machine
cannot be realized with trigger flip-flops using f for feedback., 1If one
does end up with the # partition, then he must continue to investigate
by, for example, considering those two block partitions p > o(I) to see

if 1"tf"p .

Feedback in Set-Reset Flip~Flop Realizations

In order to determine when a function f can be used as feedback
in @ machine M realized with set-reset memory elements we define the

following relations,

Definition 17. Lett and p be state partitions in machine M and

f:{s} x {x} = {0, 1}{’ where £ is a positive integer. Then +"rf"p iff

1. p is a 2 block partition

2. t.p"pt"p.

3. For every two states a, b and every input x such that §(a, x)
and §(b,x) are specified, r[al = r[bl, plal # plbl and f(a, x) = f(b, x);
then pls(a,x)] = pls(b,x)] or 8(a,x) ¢ plal and s(b,x) ¢ plb].

Before we consider the subject of feedback in set-reset realiza-
tions we must prove the next results which are similar to the ones proved

in the trigger flip-flop development.
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Result 39 (Lemma).

Let M be a machine and let h:{s} - {0, l}n and f:{s} x {x} -
£0,13%. Let A< {1,....n} and ge{1,...,n} but ggA. If for every y
¢{0,1}" and for every input x Yg(y,x) =Y, Uly, . fly,x).x) + §_fg Wiy, £y, %), x)
where U > W, then Rg(y,x) = Ig(y/\' f(y,x),x) and Sg(y,X) = Hg(y{\' Hy.x), x).
Proof.

Let Rg(y,x) = I_J(yA, f(y,x),x) and Sg(y,x) = W(yA, fly,x),x). Show
that this is allowable. That is, show that if yg =1 and Yg(y,x) = 0 then
Rg(y,x) = 1 and if yg = 0 and Yg(y,x) = 1 then Sg(y,x) = 1. In addition,
one must show that Rg and Sg are not both one for any (y,x). Suppose

Yg(y,x) = 0. Then if Vg =1 U(YA' f(y,x),%x) = 0. Thus I—J(yA, fly, x), %)

Il

1= Rg(y,x). Suppose Yg(y,x) =1 and yg = 0., Then W(yA, fly,x))=1

sg(y,x). If Rg(y,x) = 1then Uly,, f(y,x),x) = 0 and since U>W
W(yA, fly,x),x) = 0 which implies Sg(y,x) =0, If Sg(y,x) = 1 then
W(yA, f(y,x),x) = 1 and since U > W U(yA, fly,x),x) =1 which implies
R (y.x) = 0.

g |

Result 40 (Theorem).

Let M be a machine and f:{s} x {x} - {0, 1}{’. Let M be coded
by h into {O,l}n. Let 7 = l/'{ piwhere A<{l,...,n}and p = pg where
gef{l,...,n}. If v"rf"p then Rg(y,x) = Ig(yA, f(y,x), %) and Sg(y,x)

= Hg(yA, f(y, %), x). .
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Proof.

i) Suppose geA. Thenp >t and since t"rf"p implies t.p "pf"p
we deduce that 7"pf"p. Therefore Yg(y,x) = Fg(yA, f(y, x),x) from
Result 25. Define Rg(y,x) = f‘g(yA, fly, %), x) and Sg(Y,x)
= F I ’ I's . A

g(yA fly,x),x). ||

ii) Suppose ggh. Then again rt.p"pf"p and from Result 25

Y (y,x)=T Y . fHy.x),x). If welet Uly,,d,x)=F ,y =1,d,x

g(y ) g(yA Yg (y ) (YA ) g(yA Yy )
for every d ¢{0, 1}{' and W(yA,d,x) = Fg(y/\,yg =0,d,x) for every d ¢{0, 1}{’
thenY (y.,x) = Uly., fly,x),x) +v Wl(y., fly.x),x). Recall that

g(y Yg (YA YiX) vy Wiy, fly

there are freedoms on Pg in the proof of Result 25, Namely, Fg(hA(a),
hg(a), f(h(a), x),x) = hg[é (a,x)] if 8(a,x) is specified. For every other
(yA,yg,d,x) with d {0, 1})(’ and Yy e{0,1} Fg can be specified in any
manner. We specify it as follows:

For ever , v .d,x) define F v .4, x)=F v .d,x

14 (YA Yg ) g(yA Yg ) g(yA Yq )
when there is no a e¢{s}, x e{x} such that f(a,x) = 4, h,(a) = y, and
§(a,x) is specified. Show when Fg is so specified that U > W. Suppose
w ,d,x) =1, ThenF . =0,d,x)=1, ClaimF , =1,d,x

(yA ) g(yA Vg ) g(yA Yg )

=1, This clearly is true from the above statements unless there exists

[o)]

b e{s} and x ¢{x} such that (y/\,yg = Q)= (hA(a),hg(a)), (YA

(hA(b),hg(b)), f(a,x) = f(b,x) = d and &§(a,x) and §(b,x) are specified,

vy =1)
g

But hA(a) = hl\(b) implies tlal = v[b] and hg(a) = hg(b) implies plal # plbl.
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Since h {(b) =1 from F (h (a),h (a), f{h(a),x),x)=F , =0,d,x) =1
inc g( ) g( A( ) g( )., f(h(a),x),x) g(yA Yg X)
we infer that hg[a (@a,x)]1 =1 ors(a, x) ¢ plbl. But since 7"rf"p this implies
5(b, x [b]l and h [s(b,x)}=F (h (b),h (b}, f(h(a),x),x) =F ,
(b,x) ¢ p g ) g(A()g() (h(a), %), x) g(yAyg
=1,d,x) =1, Therefore W(yA,d,x) =] implies that Fg(yA,yg= 1,d,x) =1

which implies U(yA,d,x) =1, Therefore U > W. From Result 39 this

implies the theorem. ||

Result 41 (Theorem).

Let M be a sequential machine coded by h into {0, l}n. Let
f:{s} X {x} - {0, 1}*’. If M is realized by set-reset flip-flops such
that R (y,x) =1 , Hly,x),x) and S (X)) =H , fH{y.x),x) where
g(y x) g(yA (y,x),x) g(y ) g(yA (y,x),x) w
ge{l,...,n} and A < {1,...,n} thent"rf"p where = I['I\ o, and p=pg.
Proof.
i) Suppose A. IngeneralY (X)) = R ,X)+y S 1 X) .
) Supp ge g g(y ) Yg g(y ) Vg g(y )
Therefore Y (y,x) =y I , fly,x),x)+y H , fly, %), x
g(y ) Yg g(yA (v, %), %) Yg g(yA (y.x), %)
= Pg(yA. f(y, %), %).
From Result 25 this implies rt.p"pf"p and since geA implies
p > 7 this implies 7"pf"p and v "tf"p.
ii) Suppose gg¢A. Then as before Yg(y,x) = yg fg(y/\.' fly, x)
+v H , fly,x),x)=F ,v , fly,x),x). From Result 25 this implies
Yg g(yA (v, %), x) g(yA Yq (y,x) p
t.p"pf"p. Leta,b, e¢{s} and x ¢{x} such that r[a]l = 7[bl, plal # p[b],

and f(a,x) = f(b,x). Note that t[a] = 7[b] implies hA(a) = hA(b) and
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olal # plb] implies hg[a] # hg[b]. Suppose §(a,x) ¢ plb] and also suppose
hg[a] =1, Then hg[6 (a,x)] = 0 which implies Yg(h(a),x) =0= fg(hA(a),
f(h(a), x), x) or, equivalently, Ig(hA(a), f(h(a),x),x) = 1. Since Ig = Rg
and Rg = 1 implies Sg = 0 we must have Sg = Hg(hA(a),, f(h(a),x),x) =0
which in turn equals Hg(hA(b), f(h(b),x),x). Therefore Yg(h(b),x) =
which implies that §(b,x) ¢ p[b]. Suppose hg[a] = 0, Then hg[a(a,x)] =1
which implies Yg(h(a),x) =1= Hg(hA(a), f(h(a),x),x). This implies that
Sg(h(a),x) = 1 and therefore Rg(h(a),x) =0= Ig(hA(a)' f(h(a),x),x). Since
Ig(hA(a), f(h(a),x) = Ig(hA(b)' f(h(b), x), x) and hg(b) = 1 this implies that
Yg(h(b),x) = 1. Therefore hg[& (b,x)] =1 and §(b,x) ¢ p[b]. Hence r"rf"p.

With these results out of the way we are ready to define the con-
cept of feedback in machines realized with set-reset memory elements.

This definition is similar to Definition 13.

Definition 18. Let M be a machine and f:{s} x {x} - {0, 1}{’,

M can be realized with set-reset flip~flops using f for feedback iff M
can be coded by h into {0, l}n such that
1, There exists {Al, . ,Ak} a set of positive integers such
that u< v implies A < A .
u v
2. If ieh then Ri(y,x) = Ii(f(y,x),x) and Si(y,x) = Hi(f(y,x),X)
for every y ¢{0, l}n and x e {X}.

iy, %), %)

3. Ifie A -A
r r-1

where 1 < r < k then Ri(y,x) = Ii(y/\

r-1
Jly.x),x).

and S (y,x) = H.(y
1 1l r—l

A
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4, I p,= @ where p_ is the partition associated with h_.
Ak 1 1 1

Again we define the m operator this time with respect to "rf",

and then prove some results concerning it.

Definition 19, Let M be a machine and f:{s} x {x} - {0, 1}{’,

Let 1 be a state partition.
1
i) m (r) = O{p|r"rf"}. If {p|r"rf"p} = ¢, then define
1
m (tr) =1. We frequently call mrfl(T) by mrf(T) deleting the 1.

Ly iFl, i o
) m " (r) =m (m r)) foriin{1,2,...3.

Result 42,

Let t,7., and p be state partitions in a machine M and

1

f:{s} x{x} - {O,l}{'. If r. <7 andt"rf"p, thent "rf"p.

1 1

Proof,

Let a,b ¢{ s} such that Tl[a] = 'rl[b], fa,x) = f(b, %), and s(a, x)
and s(b, x) are specified, Tl[a] = Tl[b] implies 7[al = r[b] since v > T,
Suppose plal = o[b], then pls(a,x)] = pls(b, x)] since T,0 P
Suppose plal # p[b] then §(a,x) ¢ plb] implies §(b,x) ¢ plb] since

T "rf"p . "

Result 43.

Let v and v, be state partitions. If v+ > 7. then mrf(T) > mrf(T 1) .

1 1
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Proof.

Let p be such that v "rf"p. Then —rl"rf"p from Result 42 which

implies mrf("r) > mrf("r 1) |

Result 44,

i+
Let M be a machine and f:{s} x {x} - {0, 1}{’, Then m;fl(I) <

mif(I) for every i ¢{1,2,...}.
Proof,

, 2

i) Show m ¢ (1) < mrf(I) . Clearly mrf(I) < I. Therefore
. 2 ’
mrf\mrf(I)) < mrf(I) from Result 43. Thus m ¢ (1) < mrf(I) .

. j -1 . . j

ii) Suppose mrf(I) <m (I) with 2 < j. Then mrf(mrf(I)) <

i+

-1 j+1 j
mrf(mrf (I)) from Result 43. Thus m (1 < mrf(I) Al

If M is a q state machine then since I can be refined at most

a-1

g-1 times m
rf

(1) = mff (I). With this we are ready to state and prove

the main result of this section.

Result 45 (Theorem).

Let M be a q state machine and f:{s} x {x} - {0, 1}}(’. M can
be realized using set-reset flip-flop memory elements for feedback iff
-1\ _
m_ (D) a.
Proof,
Suppose M can be realized using f for feedback. Then M can

be coded by h into {0, l}n such that Definition 18 is satisfied, Let
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1. From 2 of Definition 18 and Result 41 I"rf"pi when ie:/\1

and Py is the partition associated with hi' Therefore, mrf(I) <Mp,. =1
A

i 1°
2. From 3 of Definition 18 and Result 41 (II pj)"rf"pi for
r-1
every i e A»-Ar 1 This together with Result 42 implies that [T p ."tf"pi;
-
r-1
that is, T tf Ps for every 1eAr.

. Assume mr_l(I) <7 for
rf = 'r

3. From 1 we know mrf(I) <7 1

1

every r such that 2 < r < k where k is given by Definition 18, Show

m () <r . From 2 m_(r_ ,)<IIp, =7_. From the inductive hypothesis
11 L Fps N r

- - l\r
r-1 r
and Result 43 mrf[mrf Ml < mrf(Tr- 1) ST Thus mrf(I) <7

4, Show mgf_l(I) = g, From 4 of Definition 18 /I;I P, = g. From
k
k _ _ k _ ,
3m (M<r, = /I\Ikpi = . Therefore m . (I) = /. From Result 44 this
implies mq-l(I) =g.
rf

We now consider the converse. Suppose m?f—l(l) =g, Letk
be the first integer such that m];f () =@. Then 1<k<g-1,

1, LetE. = {pilieAl} be a set of partitions with the properties

1

that I“rf“pi for every ich

, and glpi = mrf(I) . Such a set exists since

the set {p|I"rf"p} has the properties,
2. Let E2 = {pilieAz} be a set of partitions with the properties

and Tl p 2(I). Again,

that E, > E_, mrf(I) rf Py for every 1eA2 n (= M

2 1

such a set exists since {p lmrf(I)"rf"p} has the desired properties,
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This follows from Result 42 and the fact that mrfz(I) < mrf(I) .

3. Let Ek = {pil ieAk} be a set of partitions with the properties
k-1

11" 11 : = k
that Ek >Ek—1’ m (1) "tf oy for every 1e:Ak and jl\'lkpi mrf(I). The
set {p ]mlsf-l(l) "rf"p} has these properties. This follows from Result

k-1

of (1).

42 and the fact that ml:f (I) < m

4, For every ieh. let hi be the function associated with p i’

k
k
i.e. h:{s} » {0,1} and h(a) = h (b) @ p.[al = p [b]. Since m _(I) = ¢
i i i i i rf
= /I;I P h is a 1-1 coding function., Note that the range of h is {0, l}Ak.
k
Thus if we let n be the numkzr 2f clomente in /\K. ta he consistent in
notation, then h:{s} - {o,13".

5. From Result 40 since I"rf"pi for every i in A R,l(y,x)

1
= Ii(f(ylx),x) and si_(y}, %) = H:.;l(f(y‘, %), x) for every y ¢{Q, l}n. Also, from

. _ I'-l r"]- m " s
Result 40 since I'Ir-—lpi m ¢ (I) and m . (D"rf Py wheni e ARy and
2<r<k, thenR iy, %) = Ii(y[\r—ll fly,x).,x) and 8 (y, %) = Hi(YAr_l'f(Y'X)'X)"

Thus Definition 18 is satisfied and M can be realized with set-reset

flip-flops using f for feedback. ||

For an example of the previous results consider machine L in
Figure 14, This machine can be realized without feedback using set-
reset flip-flops. This can be seen as follows, Let f be a constant.

The only partitions p such that I"rf"p are (1,2, 3,5;4) and (1,2;3,4,5).
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Thus m (1) = (1,2:3,5:4). Ifp is one of (1,2,3,5:4),(1,2:3,4,5),

(1,2,3,4;5),(1,4,5:2, 3) then (1,2:3,5:4)"rf"s. Thus mrfz(I) =g and

machine L can be realized without feedback. This is done in Figure 14,

Let p, = (1,2:3,4,5)

P by = (1,2,3,5:4) and p,=(1,4,5:2,3). Then

/\1 = {1,2} and A, = {3} satisfies the properties given in the proof of

2
Result 45, In this case E1 = {pl, pz} and E2 = {ps} . A coding function
h corresponding to P1rPy and Pg is given in Figure 14,

The following results relate set-reset feedback realizations to

unit delay feedback realizations.

Result 46,

Let M be a machineand f:{s} x {x} - {0, 1}{'. Let v and vy be
state partitions such that t"pf"y. If p is a two block state partition
such that p >y then r"rf"p,

Proof.

Let a,b, e¢{s} and let x ¢{x} such that [al = +[bl, f(a,x)
= f(b,x) and s(a,x) and §(b,x) are specified. Since +"pf"y, this
implies y[s(a,x)] = y[s(b,x)] and since p >y this means pls(a,x)]

= o[s(b,x)]. Therefore "y, “

Observe that any state partition v =I{p|p > v and p is a two

block partition}. With this in mind we can easily prove the next result.
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Inputs

0 1

1 5 1 f = constant

2 5 2 mrfl(I) = (1,2;3,5;4)

3 3 2 mrfz(I) = (1;2:3:4;5).

4 4 2

5 3 1

5
Machine L
h(1)= (0101 0) R1=X Sl = X
h(2)= (OIOI 1) R2=X SZ= 0
h(3) = (1,0,1) R3 = XYY,
h(4) = (1,1, 0)
h(s) = (1,0, 0)
0 1 0 1 0 1
1 000 100 000 0dd ddd || 100 000
2 001 100 001 0d1l  ddo 100 00d
3 101 101 001 0d0 1d0 dod 00d
4 110 110 001 00d 110 ddo 001
5 100 101 000 0d0 1dd ddl 00d
(Yl,YZ,Y3) (Rl.Rz,R3) (81,82,83)

Figure 14.




70
Result 47,
Let M be a machine and f:{s} x {x} -» {0, l}*’. Let T be a state

(r).

partition. Then mpf(T) 2 m,
Proof.
Let v be a partition such that t"pf"y. Let p be a 2 block

partition greater than v. Then +"rf"p from Result 46. This implies

(r). |l

mpf('r) 2m,

This implies immediately a result relating set-reset flip-flop
realizations to unit delay realizations. Results 43 and 47 imply
immediately that for every i in{1,2,...} that m;f('r) > m;f('r) . Since

i-1

. . , i-1
mpf('r) > mrf(T) from Result 47 and by induction if m e (1) > m (1)

i-1 i-1 i-1
then mpf[mpf ()1 > mrf[mpf ()] > mrf(mrf (t)) from Results 43 and 47.

This implies the following result,

Result 48 (Theorem),

If machine M can be realized with unit delays using f for feed-
back, then M can be realized with set-reset flip-flop using f for feedback,
Proof.

The hypothesis implies from Result 27 that mggl(l) = f where q

g-1

is the number of states. But this implies m (I) = 4. From Result 45

this implies the theorem. ||
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It should be noticed in Figure 14 that machine L cannot be
realized with uni?: delays using f = constant for feedback. To deter-
mine if a machine M can be realized using f for feedback it is necessary
to compute mrf(q-) for various + which is not an easy problem. In general
one must consider all two block partitions p to see if t"rf"p, Fora g

g-1

state machine there are 2 -1 such partitions. It is wise to compute

mpf(T) first, From Result 47 we know that mrf(fr) < mpf(T), therefore, it
is not necessary to consider these p such that o > mpf(T) .

In this chapter we have developed a method for determining when
a machine can be realized using a function f for feedback with either set-
reset or trigger flip-flop memory elements, This method is more difficult
to apply than the one given in Reference 3 for the unit delay case., We
have also shown in Results 36 and 48 that for a given machine its feed-
back properties will be differenf for trigger, set-reset and unit delay
type realizations. Thus in general one must first decide the type of

memory element he wants to use before making a study of the feedback

characteristics of a machine.
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